M - Inverse Matrices Lesson

Math_Lesson_TopBanner.png Inverse Matrices

Before we discuss inverse matrices, let's talk about the determinant of a matrix. The determinant is the difference of the product of the two diagonals. We will calculate the determinant of a 2x2 matrix by hand, but for anything greater, we can use the calculator! We can only find the determinant of square matrices (remember a square matrix contains the same number of rows and columns)!

If LaTeX: A=
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}A=[abcd], then LaTeX: \det\left(A\right)=\left|A\right|=
\begin{vmatrix}
a & b \\
c & d
\end{vmatrix}
=ad-cbdet(A)=|A|=|abcd|=adcb

Watch this video to determine how to find the determinant of a 3 x 3 matrix.

Two matrices are considered inverses if, when multiplied (both ways), they create an identity matrix. An identity matrix is a square matrix with 1's on the main diagonal and 0's everywhere else.

 LaTeX: \begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 &0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0& 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix}[1001][100010001][1000010000100001]

Determine whether LaTeX: A=
\begin{bmatrix}
-3 & 2 \\
-2 & 1
\end{bmatrix}
\text{and}\: B=
\begin{bmatrix}
1 & -2 \\
2 & -3
\end{bmatrix}A=[3221]andB=[1223] are inverse matrices.

If AB = BA = I (the identity matrix), then A and B are inverse matrices.

Step 1: Find AB

LaTeX: AB=
\begin{bmatrix}
-3 & 2 \\
-2 & 1
\end{bmatrix}
A=
\begin{bmatrix}
1 & -2 \\
2 & 3
\end{bmatrix}
=
A=
\begin{bmatrix}
-3+4 & 6+(-6) \\
-2+2 & 4+(-3) 
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}AB=[3221]A=[1223]=A=[3+46+(6)2+24+(3)]=[1001]

Step 2: Find BA

LaTeX: AB=
\begin{bmatrix}
1 & -2 \\
2 & -3
\end{bmatrix}
\begin{bmatrix}
-3 & 2 \\
-2 & 1
\end{bmatrix}
=
\begin{bmatrix}
-3+4 & 2+(-2) \\
-6+6 & 4+(-3) 
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}AB=[1223][3221]=[3+42+(2)6+64+(3)]=[1001]

Since AB = BA = I, we can confirm that LaTeX: B=A^{-1}\:and\:A=B^{-1}B=A1andA=B1.

Determine whether A and B are inverse matrices. 

1. Problem: LaTeX: A=
\begin{bmatrix}
-4 & 3 \\
3 & -2
\end{bmatrix}
\text{and}\:B=
\begin{bmatrix}
2 & 3 \\
3 & 4
\end{bmatrix}A=[4332]andB=[2334]

  • Solution: yes

2. Problem: LaTeX: A=
\begin{bmatrix}
6 & 2 \\
2 & 1
\end{bmatrix}
\text{and}\:B=
\begin{bmatrix}
1 & -2 \\
-2 & 6
\end{bmatrix}A=[6221]andB=[1226]

  • Solution: no

So, let's try and find the inverse of a matrix by hand. Here is the formula:

LaTeX: Let\:A=
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\text{then}\:A^{-1} =\frac{1}{ad-cb}
\begin{bmatrix}
d & -b \\
-c & a
\end{bmatrix}LetA=[abcd]thenA1=1adcb[dbca]

Notice that you are using the determinant in this formula!

If the determinant of a matrix is 0, then the inverse does not exist and the matrix is considered to be singular.

Watch this video to try an example:

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS