M - Multiplying Matrices Lesson

Math_Lesson_TopBanner.png Multiplying Matrices

Before we learn about how to multiply a matrix by another matrix - let's first talk about scalar multiplication. This just means to multiply a matrix by a constant.

For instance, let LaTeX: A=\begin{bmatrix}
1 & -2 & 5\\
0 & 4 & -1
\end{bmatrix}A=[125041] then if we want to find 2A, we would multiply each entry by 2.

So, LaTeX: 2A=\begin{bmatrix}
2 & -4 & 10\\
0 & 8 & -2
\end{bmatrix}2A=[2410082]

Try a few problems to see if you've got it:

LaTeX: A=\begin{bmatrix}
-4 & 7 & 9\\
0 & 3 & 2
\end{bmatrix}
B=
\begin{bmatrix}
3 & 6 & 8\\
-1 & -2 & 0
\end{bmatrix}
C=\begin{bmatrix}
1 & 0 & 5\\
4 & 2 & -2\\
7 & -3 & 1
\end{bmatrix}
D=
\begin{bmatrix}
7 & -2 & 0\\
5 & 3 & 3\\
6 & -1 & 4
\end{bmatrix}A=[479032]B=[368120]C=[105422731]D=[720533614]

Try these problems to see if you get the correct solution.

1. Problem: -3B

  • Solution: LaTeX: -3B=\begin{bmatrix}
-9& -18 & -24\\
3 & 6 & 0
\end{bmatrix}3B=[91824360]

2. Problem: (1/2)C

  • Solution: LaTeX: \frac{1}{2}C=\begin{bmatrix}
\frac{1}{2}& 0 & \frac{5}{2}\\
2 & 1 & -1\\
\frac{7}{2} & -\frac{3}{2} & \frac{1}{2}
\end{bmatrix}12C=[12052211723212]

3. Problem: 3C+2D

  • Solution: LaTeX: 3C+2D=\begin{bmatrix}
17& -4 & 15\\
22 & 12 & 0 \\
33 & -11 & 11
\end{bmatrix}3C+2D=[1741522120331111]

4. Problem: 4B - A

  • Solution: LaTeX: 4B-A=\begin{bmatrix}
16 & 17 & 23\\
-4 & -11 & -2
\end{bmatrix}4BA=[1617234112]

So far, matrices have behaved fairly predictably and with the same properties as real numbers. But, matrix multiplication is unusual!

In order to multiply two matrices A and B, the number of columns in matrix A must be equal to the number of rows in matrix B. If matrix AB is possible, the resulting matrix has the same number of rows as matrix A and columns as matrix B.

matrix A * matrix B = AB

(4 x 2) * (2 x 3) = 4 x 3

4x2   2x3
Since the inner values are equal, the matrices can be multiplied.
The green values are the dimensions of the answer 4x3LaTeX: 
=
\begin{bmatrix}
(a\times i)+(b\times l) & (a\times j)+(b\times m) & (a\times k)+(b\times n)\\
(c\times i)+(d\times l) & (c\times j)+(d\times m) & (c\times k)+(d\times n) \\
(e\times i)+(f\times l) & (e\times j)+(f\times m) & (e\times k)+(f\times n) \\
(g\times i)+(h\times l) & (g\times j)+(h\times m) & (g\times k)+(h\times n) &
\end{bmatrix}=[(a×i)+(b×l)(a×j)+(b×m)(a×k)+(b×n)(c×i)+(d×l)(c×j)+(d×m)(c×k)+(d×n)(e×i)+(f×l)(e×j)+(f×m)(e×k)+(f×n)(g×i)+(h×l)(g×j)+(h×m)(g×k)+(h×n)] 

Watch this video to try a problem:

Try a few problems to see if you've got it:

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS