TI - Solve Equations Using Basic Identities Lesson

Math_Lesson_TopBanner.png Solving Equations using Basic Identities

Recall, in the first module we learned about some trigonometric identities: quotient, reciprocal and Pythagorean.

Try these problems to review those:

 

Watch this video to recall how to verify identities:

On a separate sheet of paper, verify the identities below:

1. LaTeX: \left(\cos^2\theta-1\right)\left(\tan^2\theta+1\right)=-\tan^2\theta(cos2θ1)(tan2θ+1)=tan2θ

2. LaTeX: \frac{\tan^2\theta+1}{\tan^2\theta}=\csc^2\thetatan2θ+1tan2θ=csc2θ

3. LaTeX: \tan B+\cot B=\csc B\sec BtanB+cotB=cscBsecB

In a previous chapter, we learned how to solve trigonometric equations. Let's look at a problem that we've already done:

Find all solutions for the equation LaTeX: 4\sin^2x+1=44sin2x+1=4, over the interval LaTeX: \left[0,\:2\pi\right)[0,2π).

LaTeX: 4\sin^2x+1=4\\
4\sin^2x=3\\
\sin^2x=\frac{3}{4}\\
\sin x=\pm\sqrt[]{\frac{3}{4}}\\
\sin x=\pm\frac{\sqrt[]{3}}{2} \\
x=\frac{\pi}{3},\:\frac{2\pi}{3},\:\frac{4\pi}{3},\:\frac{5\pi}{3}4sin2x+1=44sin2x=3sin2x=34sinx=±34sinx=±32x=π3,2π3,4π3,5π3

 

Now, watch these videos to try a type of problem you haven't seen before:

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS