TI - Trigonometric Identities Module Overview

Math_PrecalculusBanner.png Trigonometric Identities Module Overview 

Introduction

Image of fish swimming in the ocean with Trigonometric Identities at the top.
In this module, we will finish our exploration of trigonometry with a deep dive into trigonometric identities! We will solve more trigonometric equations and learn new identities. Make sure you keep your Unit Circle handy!

Essential Questions

  • What is an identity?
  • How do I use trigonometric identities to prove statements?
  • How do I use trigonometric identities to solve equations?

Trigonometric Identities Key Terms

The following key terms will help you understand the content in this module.

Addition Identity for Cosine - LaTeX: \cos\left(x+y\right)=\cos x\cos y-\sin x\sin ycos(x+y)=cosxcosysinxsiny

Addition Identity for Sine - LaTeX: \sin\left(x+y\right)=\sin x\cos y+\cos x\sin ysin(x+y)=sinxcosy+cosxsiny

Addition Identity for Tangent - LaTeX: \tan\left(x+y\right)=\frac{\tan x+\tan y}{1-\tan x\tan y}tan(x+y)=tanx+tany1tanxtany

Double Angle Identity for Sine - LaTeX: \sin\left(2x\right)=2\sin x\cos xsin(2x)=2sinxcosx

Double Angle Identity for Cosine - LaTeX: \cos\left(2x\right)=\cos^2x-\sin^2x=2\cos^2x-1=1-2\sin^2xcos(2x)=cos2xsin2x=2cos2x1=12sin2x

Double Angle Identity for Tangent - LaTeX: \tan\left(2x\right)=\frac{2\tan x}{1-\tan^2x}tan(2x)=2tanx1tan2x

Half Angle Identity for Sine - LaTeX: \sin\left(\frac{x}{2}\right)=\pm\frac{\sqrt[]{1-\cos x}}{2}sin(x2)=±1cosx2

Half Angle Identity for Cosine - LaTeX: \cos\left(\frac{x}{2}\right)=\pm\frac{\sqrt[]{1+\cos x}}{2}cos(x2)=±1+cosx2

Half Angle Identity for Tangent - LaTeX: \tan\left(\frac{x}{2}\right)=\pm\sqrt[]{\frac{1-\cos x}{1+\cos x}}=\frac{\sin x}{1+\cos x}tan(x2)=±1cosx1+cosx=sinx1+cosx

Subtraction Identity for Cosine - LaTeX: \cos\left(x-y\right)=\cos x\cos y+\sin x\sin ycos(xy)=cosxcosy+sinxsiny

Subtraction Identity for Sine - LaTeX: \sin\left(x-y\right)=\sin x\cos y-\cos x\sin ysin(xy)=sinxcosycosxsiny

Subtraction Identity for Tangent - LaTeX: \tan\left(x-y\right)=\frac{\tan x-\tan y}{1+\tan x\tan y}tan(xy)=tanxtany1+tanxtany

Even Function - a function with symmetry about the y-axis that satisfies the relationship LaTeX: f\left(-x\right)=f\left(x\right)f(x)=f(x)

Odd Function - a function with symmetry about the origin that satisfies the relationship LaTeX: f\left(-x\right)=-f\left(x\right)f(x)=f(x)

Pythagorean Identities -   LaTeX: \cos^2\theta+\sin^2\theta=1\\
1+\tan^2\theta=\sec^2\theta\\
1+\cot^2\theta=\csc^2\theta\\cos2θ+sin2θ=11+tan2θ=sec2θ1+cot2θ=csc2θ

Math_OverviewBottomBanner.png IMAGES CREATED BY GAVS