TIE - The Pythagorean Identity Lesson

Math_Lesson_TopBanner.png The Pythagorean Identity

30-60-90 triangle labeled sides a, b, c
a squared + b squared = c squared

In Geometry, you learned a very important theorem known as the Pythagorean Theorem. Now, we are going to apply the Pythagorean Theorem to verify some Trigonometry identities. So let's think about this in terms of sine and cosine.

If we let: LaTeX: x^2+y^2=1x2+y2=1

Now, divide both sides by LaTeX: r^2r2: LaTeX: \frac{x^2+y^2}{r^2}=\frac{r^2}{r^2}x2+y2r2=r2r2

And re-arranged a bit: LaTeX: \frac{x^2}{r^2}+\frac{y^2}{r^2}=1x2r2+y2r2=1

Apply exponent rules: LaTeX: \left(\frac{x}{r}\right)^2+\left(\frac{y}{r}\right)^2=1(xr)2+(yr)2=1

Replace with sine and cosine: LaTeX: \left(\sin\theta\right)^2+\left(\cos\theta\right)^2=1,\:(sinθ)2+(cosθ)2=1,  which can also be written this way: LaTeX: \sin^2\theta+\cos^2\theta=1.sin2θ+cos2θ=1.

This result is called a Pythagorean Identity. It can be written in different forms by manipulating the original equation. For example,

                                      LaTeX: \sin^2\theta+\cos^2\theta=1sin2θ+cos2θ=1 

                                      LaTeX: \cos^2\theta=1-\sin^2\thetacos2θ=1sin2θ

                                      LaTeX: \sin^2\theta=1-\cos^2\thetasin2θ=1cos2θ

So now, we can use the Pythagorean Identity to verify identity problems.

On a separate sheet of paper, verify the identities below:

LaTeX: 1.\:\left(\cos^2\theta-1\right)\left(\tan^2\theta+1\right)=-\tan^2\theta \\
2.\:\frac{\left(\tan^2\theta+1\right)}{\tan^2\theta}=1+\cot^2\theta \\
3.\:\tan B+\cot B=\csc B\sec B1.(cos2θ1)(tan2θ+1)=tan2θ2.(tan2θ+1)tan2θ=1+cot2θ3.tanB+cotB=cscBsecB

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS