TIE - Applying Trigonometric Identities and Equations Overview 

Math_PrecalculusBanner.png Applying Trigonometric Identities and Equations Overview 

Image of fish swimming in the ocean with Trigonometric Identities at the top.

In this module, we will finish our exploration of trigonometry with a deep dive into trigonometric identities! We will solve more trigonometric equations and learn new identities. Make sure you keep your Unit Circle handy!
In previous math courses, you have dealt with mostly right triangles.  However, in this module we will explore non-right, or oblique, triangles! You can still use trigonometry to solve them, but not by your traditional trigonometric ratios. Oblique triangles are often used in navigation and estimating distances - read on to see how we will solve oblique triangles!

Essential Questions

  • What is an identity?
  • How do I use trigonometric identities to prove statements?
  • How do I use trigonometric identities to solve equations?
  • How can I calculate the area of any triangle given only two sides and a non-included angle?
  • How can I apply trigonometric relationships to non-right triangles?

Trigonometric Identities Key Terms

The following key terms will help you understand the content in this module.

Addition Identity for Cosine - LaTeX: \cos\left(x+y\right)=\cos x\cos y-\sin x\sin ycos(x+y)=cosxcosysinxsiny

Addition Identity for Sine - LaTeX: \sin\left(x+y\right)=\sin x\cos y+\cos x\sin ysin(x+y)=sinxcosy+cosxsiny

Addition Identity for Tangent - LaTeX: \tan\left(x+y\right)=\frac{\tan x+\tan y}{1-\tan x\tan y}tan(x+y)=tanx+tany1tanxtany

Double Angle Identity for Sine - LaTeX: \sin\left(2x\right)=2\sin x\cos xsin(2x)=2sinxcosx

Double Angle Identity for Cosine - LaTeX: \cos\left(2x\right)=\cos^2x-\sin^2x=2\cos^2x-1=1-2\sin^2xcos(2x)=cos2xsin2x=2cos2x1=12sin2x

Double Angle Identity for Tangent - LaTeX: \tan\left(2x\right)=\frac{2\tan x}{1-\tan^2x}tan(2x)=2tanx1tan2x

Half Angle Identity for Sine - LaTeX: \sin\left(\frac{x}{2}\right)=\pm\frac{\sqrt[]{1-\cos x}}{2}sin(x2)=±1cosx2

Half Angle Identity for Cosine - LaTeX: \cos\left(\frac{x}{2}\right)=\pm\frac{\sqrt[]{1+\cos x}}{2}cos(x2)=±1+cosx2

Half Angle Identity for Tangent - LaTeX: \tan\left(\frac{x}{2}\right)=\pm\sqrt[]{\frac{1-\cos x}{1+\cos x}}=\frac{\sin x}{1+\cos x}tan(x2)=±1cosx1+cosx=sinx1+cosx

Subtraction Identity for Cosine - LaTeX: \cos\left(x-y\right)=\cos x\cos y+\sin x\sin ycos(xy)=cosxcosy+sinxsiny

Subtraction Identity for Sine - LaTeX: \sin\left(x-y\right)=\sin x\cos y-\cos x\sin ysin(xy)=sinxcosycosxsiny

Subtraction Identity for Tangent - LaTeX: \tan\left(x-y\right)=\frac{\tan x-\tan y}{1+\tan x\tan y}tan(xy)=tanxtany1+tanxtany

Even Function - a function with symmetry about the y-axis that satisfies the relationship LaTeX: f\left(-x\right)=f\left(x\right)f(x)=f(x)

Odd Function - a function with symmetry about the origin that satisfies the relationship LaTeX: f\left(-x\right)=-f\left(x\right)f(x)=f(x)

Pythagorean Identities -   LaTeX: \cos^2\theta+\sin^2\theta=1\\
1+\tan^2\theta=\sec^2\theta\\
1+\cot^2\theta=\csc^2\theta\\cos2θ+sin2θ=11+tan2θ=sec2θ1+cot2θ=csc2θ

Altitude of a triangle - The perpendicular distance between a vertex of a triangle and the side opposite that vertex.

Included Angle - The angle between two given sides of a triangle.

Law of Cosines -  LaTeX: c^2=a^2+b^2-2ab\cdot Cos(C)c2=a2+b22abCos(C)     

Law of Sines - LaTeX: \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}asinA=bsinB=csinC

Oblique Triangle - A triangle that is not a right triangle.

Angle of Elevation - The angle of elevation of an object as seen by an observer is the angle between the horizontal and the line from the object to the observer's eye (the line of sight).

Angle of Depression - The angle below horizontal that an observer must look to see an object that is lower than the observer.

Math_OverviewBottomBanner.png IMAGES CREATED BY GAVS