TEF - Graphing Tangent Lesson

Math_Lesson_TopBanner.png Graphing Tangent

Let's think about how to graph LaTeX: f\left(t\right)=\tan\left(x\right)f(t)=tan(x).

We know that tangent represents a specific ratio:

Tangent: the ratio of y to x, LaTeX: \tan\theta=\frac{y}{x}tanθ=yx

Let's use our Unit Circle values to create a table:

 

t

0

LaTeX: \frac{\pi}{6}π6

LaTeX: \frac{\pi}{4}π4

LaTeX: \frac{\pi}{3}π3

LaTeX: \frac{\pi}{2}π2

LaTeX: \frac{2\pi}{3}2π3

LaTeX: \frac{3\pi}{4}3π4

LaTeX: \frac{5\pi}{6}5π6

LaTeX: \piπ

LaTeX: \frac{7\pi}{6}7π6

LaTeX: \frac{5\pi}{4}5π4

LaTeX: \frac{4\pi}{3}4π3

LaTeX: \frac{3\pi}{2}3π2

LaTeX: \frac{5\pi}{3}5π3

LaTeX: \frac{7\pi}{4}7π4

LaTeX: \frac{11\pi}{6}11π6

LaTeX: 2\pi2π

LaTeX: f\left(t\right)=\tan tf(t)=tant

0

LaTeX: \frac{\sqrt[]{3}}{3}\approx0.577330.577

1

LaTeX: \sqrt[]{3}\approx1.73231.732

undefined

LaTeX: -\sqrt[]{3}\approx-1.73231.732

-1

LaTeX: -\frac{\sqrt[]{3}}{3}\approx-0.577330.577

0

LaTeX: \frac{\sqrt[]{3}}{3}\approx0.577330.577

1

LaTeX: \sqrt[]{3}\approx1.73231.732

undefined

LaTeX: -\sqrt[]{3}\approx-1.73231.732

-1

LaTeX: -\frac{\sqrt[]{3}}{3}\approx-0.577330.577

0

 

 

tangent points plotted on graph

 

 

tangent points plotted on graph and finished

 

Notice that in the table above, when the angle is LaTeX: \frac{\pi}{2}\:or\:\frac{3\pi}{2},π2or3π2, the output of tangent is undefined. In addition, there are no points on the graph at those values. That is because:

LaTeX: \tan\left(\frac{\pi}{2}\right)=\frac{y}{x}=\frac{1}{0}=undefined\:and\:\tan\left(\frac{3\pi}{2}\right)=\frac{y}{x}=-\frac{1}{0}=undefinedtan(π2)=yx=10=undefinedandtan(3π2)=yx=10=undefined

 

So, at those two values, there are vertical asymptotes.

Tangent points plotted on graph and finished with vertical aysmptotes

 

 

Since the period above is , there are going to be asymptotes at LaTeX: x=\frac{\pi}{2}x=π2 and all values that are multiples of  away. This means there is an asymptote at all values of LaTeX: x=\frac{\pi}{2}+\pi n,\:where\:n\:is\:an\:integer.x=π2+πn,wherenisaninteger. Since the tangent graph does not contain maximum or minimum values, there is no amplitude. 

Let's identify some important features of LaTeX: y=\tan xy=tanx

1. What is the domain of LaTeX: y=\tan xy=tanx?

  • Solution: all real numbers,  LaTeX: x\ne\frac{\pi}{2}+\pi nxπ2+πn

2. What is the range of LaTeX: y=\tan xy=tanx?

  • Solution: all real numbers

3. What is the period of LaTeX: y=\tan xy=tanx?

  • Solution: LaTeX: \piπ

Remember for f(t)=A tan(Bt+C)+D
vertical stretch=A
period= : pi/|B|
asymptotes: pi/2 = Bt+C
(solve for t then use the period!)
midline: y=D
(points in the middle of asymptotes are located at the midline)
*We don't consider tangent to have amplitude since there are no max's or min's

Watch this video to work on graphing some transformations of LaTeX: y=\tan xy=tanx.

 

Let's try graphing another tangent function: LaTeX: f\left(x\right)=\tan\left(x+\frac{\pi}{2}\right)f(x)=tan(x+π2).

First, let's identify the key features:

1. There is no vertical stretch because A = 1.

2. The period is LaTeX: \piπ because B = 1, so LaTeX: \frac{\pi}{B}=\frac{\pi}{1}=\piπB=π1=π.

3. To solve for the asymptotes, you set up the equation:

LaTeX: \frac{\pi}{2}=Bx+C \\
\frac{\pi}{2}=1x+\frac{\pi}{2} \\
0=xπ2=Bx+Cπ2=1x+π20=x

So, the first asymptote is at x = 0 and all the other asymptotes are at intervals of LaTeX: \piπ units away. So the graph of the function should look like this:

 

GraphingTangentGraph.png

 

 

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS