TEF - Shifting Sine and Cosine Lesson

Math_Lesson_TopBanner.png Shifting Sine and Cosine

So, we've stretched and compressed sine and cosine, and now it's time to shift the graphs! Let's compare the graphs of LaTeX: f\left(x\right)=\sin x\:and\:f\left(x\right)=\sin\left(x+\frac{\pi}{4}\right)f(x)=sinxandf(x)=sin(x+π4).

 

 

A function of the form LaTeX: f\left(x\right)=\sin\left(bx+c\right)\:or\:f\left(x\right)=\cos\left(bx+c\right),\:then\:the\:phase\:shift=-\frac{c}{b}f(x)=sin(bx+c)orf(x)=cos(bx+c),thenthephaseshift=cb,

Watch this video to practice graphing a bit:

 

 

So, now let's talk about shifting sine and cosine up and down. Below, is an animation of two functions: LaTeX: f\left(x\right)=\cos x\:and\:f\left(x\right)=\cos\left(x\right)+Df(x)=cosxandf(x)=cos(x)+D

 

Watch this video to practice graphing a bit:

 

Remember for f(t)=A sin(Bt+C)+D or f(t)=A cos(Bt+C)+D
amplitude=|A|
period=2pi/|B|
midline: y=D
distance between critical points = Period/4

 

 

 

 

 

 

 

 

 

 

 

 

With a function of the form, LaTeX: f\left(t\right)=\sin\left(t\right)+D\:or\:f\left(t\right)=\cos\left(t\right)+Df(t)=sin(t)+Dorf(t)=cos(t)+D, the midline is LaTeX: y=Dy=D . Let's put it all together and practice what you've learned.

 

Application Problem:

The current, I , in amperes flowing through a particular alternating current circuit at a time, t seconds is: LaTeX: I=-240\sin\left(22\pi t\right)I=240sin(22πt).

1. What is the amplitude of the current?

  • Solution: LaTeX: amplitude\:=\:\left|-240\right|\:=\:240amplitude=|240|=240

2. What is the period of the current?

  • Solution: LaTeX: period\:=\frac{\:2\pi}{22\pi}=\frac{1}{11}\:\sec.period=2π22π=111sec.

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS