QF - Convert Between Forms (Lesson)

Convert Between Forms

Given a quadratic function in vertex form, let's convert it to standard form:

LaTeX: f(x)=-2(x-1)^2+7f(x)=2(x1)2+7                          Expand the binomial squared

LaTeX: f(x) = -2(x - 1)(x - 1) + 7f(x)=2(x1)(x1)+7     

     

Then, start with the exponent and FOIL the LaTeX: (x-1)^2(x1)2:

LaTeX: f(x)=-2(x^2-x-x+1)+7f(x)=2(x2xx+1)+7          Combine like terms

LaTeX: f(x)=-2(x^2-2x+1)+7f(x)=2(x22x+1)+7

 

Then, distribute the 2:

LaTeX: f(x)=-2x^2+4x-2+7f(x)=2x2+4x2+7                   Combine like terms

LaTeX: f(x)=-2x^2+4x+5f(x)=2x2+4x+5

 

Converting from standard form to vertex form requires us to utilize the completing the square method we learned in a previous lesson. Watch this video to learn how to do that.

 


Convert from Standard Form to Vertex Form Practice

Try these problems.

  1. f(x) = 2x2 + 8x + 3
  2. f(x) = x2 + 10x + 2
  3. f(x) = -3x2 -6x + 4

TO VIEW THE SOLUTIONS ONCE YOU HAVE PRACTICED, CLICK HERE. Links to an external site.

IMAGES CREATED BY GAVS