CN - Polar Form Lesson

Math_Lesson_TopBanner.png Polar Form

So far, we've dealt with rectangular representations of complex numbers z = a + bi. However, we can also represent complex numbers in polar form.

Consider the complex number z = 3 + 2i, we know that to graph that, we move 3 units to the right and 2 units up. We can also write that number in polar form using r (the modulus of z) and θ, the direction of the point (starting at the positive ­x-axis).

image of an angle/triangle on graph

Let's consider a general case:

image of triangle abr plotted on graph with point (a, b)

By the Pythagorean theorem, we know that: LaTeX: r^2=a^2+b^2r2=a2+b2

Using trig ratios, we know that:

LaTeX: \cos\theta=\frac{a}{r}\:and\:\sin\theta=\frac{b}{r}\\
r\cos\theta=a\:and\:r\sin\theta=bcosθ=arandsinθ=brrcosθ=aandrsinθ=b

So, if we take our complex numbers and make some substitutions, we can determine that polar form of a complex number is:

LaTeX: z=a+bi\:\Longrightarrow\:r\cos\theta+i\left(r\sin\theta\right)=r\left(\cos\theta+i\sin\theta\right)z=a+bircosθ+i(rsinθ)=r(cosθ+isinθ). This final expression can be condensed to LaTeX: r\:cis\:\theta.rcisθ.

In addition, we can calculate θ by using the trig ratio: LaTeX: \tan\theta=\frac{b}{a}tanθ=ba. When finding LaTeX: \theta,\:θ,you will need to add 180° or π when a is negative. It is a good idea to plot the complex number and make sure LaTeX: \theta\:θlands in the correct quadrant.

 

While points in rectangular form and polar form are actually in the same location, we can use different types of graphs so that the points are easier to plot.

Rectangular Graph

Polar Graph

image of real/imaginary axis on a rectangular grid

image of real/imaginary axis on a polar grid

 

Let's use this information to write some complex numbers in polar form:

Write each complex number below in polar form.

Problem: LaTeX: 2+2i\sqrt[]{3}2+2i3

  • Solution: LaTeX: 4\left(\cos60°\:+i\sin60°\right)4(cos60°+isin60°)

Problem: LaTeX: -\frac{3}{2}-\frac{3\sqrt[]{3}}{2}i32332i

  • Solution: LaTeX: 3\left(\cos\frac{4\pi}{3}+i\sin\frac{4\pi}{3}\right)3(cos4π3+isin4π3)

Problem: LaTeX: -\frac{5}{2}+\frac{5\sqrt[]{3}}{2}i52+532i

  • Solution: LaTeX: 5\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)5(cos2π3+isin2π3)

Problem: LaTeX: 3\sqrt[]{2}-3i\sqrt[]{2}323i2

  • Solution: LaTeX: 6\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)6(cos7π4+isin7π4)

Convert each polar form to complex numbers.

Problem: LaTeX: 5\left(\cos300°+i\sin300°\right)5(cos300°+isin300°)

  • Solution: LaTeX: \frac{5}{2}-\frac{5\sqrt[]{3}}{2}i52532i

Problem: LaTeX: 5\left(\cos\frac{3\pi}{2}+i\sin\frac{3\pi}{2}\right)5(cos3π2+isin3π2)

  • Solution: -5i

Problem: LaTeX: 2\left(\cos60°+i\sin60°\right)2(cos60°+isin60°)

  • Solution: LaTeX: 1+i\sqrt[]{3}1+i3

Problem: LaTeX: 5\left(\cos30°+i\sin30°\right)5(cos30°+isin30°)

  • Solution: LaTeX: \frac{5\sqrt[]{3}}{2}+\frac{5}{2}i532+52i

 

At times, you might see the polar form of a complex number represented as LaTeX: r\:cis\:\theta.rcisθ.

The polar form of a complex number: LaTeX: r\left(\cos\theta+i\sin\theta\right)\:\Longrightarrow\:r\:cis\:\thetar(cosθ+isinθ)rcisθ

So, let's try using that representation to graph some complex numbers on the polar plane.

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS