TI - Half Angle Identities Lesson
Half Angle Identities
The last set of identities we will use are the Half-Angle Identities:
sin(θ2)=±√1−cosθ2cos(θ2)=±√1+cosθ2
tan(θ2)=±√1−cosθ1+cosθtan(θ2)=1−cosθsinθtan(θ2)=sinθ1+cosθ
*To determine which sign to use, you should check the quadrant in which θ2 lies.
Let's prove cos(θ2)=±√1+cosθ2, we will use our double angle formula for cosine:
cos(2θ)=2cos2θ−1.
- In cos(2θ) = 2cos²θ - 1, we know that θ is half of 2θ, so let's set 2θ = x, so that means that θ = x/2.
cosx=2cos2(x2)−1
- So now let's rearrange this formula to isolate the half angle.
cosx=2cos2(x2)−11+cosx=2cos2(x2)1+cosx2=cos2(x2)±√1+cosx2=cos(x2)
Watch this video to try using the half-angle formula:
Find the exact value of each expression:
1. \sin75°
- Solution:
\frac{\sqrt[]{2+\sqrt[]{3}}}{2}
- Solution:
-2-\sqrt[]{3}
3. \sin22.5°
- Solution:
\frac{\sqrt[]{2-\sqrt[]{2}}}{2}
Let's try solving an equation using a half-angle identity, watch this video:
Solve each equation on the interval \left[0,\:2\pi\right).
1. Problem: 2\sin^2\frac{x}{2}+\cos x=1+\sin x
- Solution:
\left\{0,\:\pi\right\}
2. Problem: \sin^2\frac{x}{2}=\cos^2\frac{x}{2}
- Solution:
\left\{\frac{\pi}{2},\:\frac{3\pi}{2}\right\}
IMAGES CREATED BY GAVS