TGT - Law of Sines Lesson

Math_Lesson_TopBanner.png Law of Sines

This module is all about solving triangles that are oblique. One of the ways that we do it is by using the Law of Sines. Below we will discover the Law of Sines.

Consider LaTeX: \bigtriangleup ABCABC below.

Triangle ABC with sides a, b, c

Draw an altitude from ∠B, down to side b and call it h.

triangle ABC and sides a, b, c with height indicated

Now, we could set up the following sine ratios using side h.

LaTeX: \sin A=\frac{h}{c}\:and\:\sin C=\frac{h}{a}\\
csinA=h\:\:\:\:\:\:\:asin C=hsinA=hcandsinC=hacsinA=hasinC=h

Using the substitution, we can say that:

LaTeX: c\:sinA=a\:\sin C\\
\frac{c}{\sin C}=\frac{a}{\sin A}csinA=asinCcsinC=asinA

Well, what if we drew an altitude from ∠A, down to side a and call it j.

triangle ABC with sides a, b, c with height indicated (j) from angle A

Now, we could set up the following sine ratios using side j.

LaTeX: \sin B=\frac{j}{c}\:and\:\sin C=\frac{j}{b}\\
sin B=j\:\:\:\:\:\:\:b\:\sin C=jsinB=jcandsinC=jbsinB=jbsinC=j

Using the substitution, we can say that:

LaTeX: c\sin B=b\sin C\\
\frac{c}{\sin C}=\frac{b}{\sin B}csinB=bsinCcsinC=bsinB

And now, we know that:

LaTeX: \frac{c}{\sin C}=\frac{b}{\sin B}\:and\:\frac{c}{\sin C}=\frac{a}{\sin A}csinC=bsinBandcsinC=asinA  

So, by the transitive property we know:

LaTeX: \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}asinA=bsinB=csinC

Therefore, LAW OF SINES states: Let a, b, and c be the side lengths opposite angles A, B, and C. Then LaTeX: \bf\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}asinA=bsinB=csinC.

Watch this video to practice solving a right triangle using the Law of Sines:

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS