GTF - Graphing Sine and Cosine Lesson

Math_Lesson_TopBanner.png Graphing Sine and Cosine

image of completed unit circle

To the right, you can see a completed Unit Circle. As a reminder, the Unit Circle provides a quick reference for the trigonometric ratios of special angles.

We know that sine and cosine represent specific RATIOS, where r equals the radius:

Sine: the ratio of y to r, LaTeX: \sin\theta=\frac{y}{r}sinθ=yr

Cosine: the ratio of x to r, LaTeX: \cos\theta=\frac{y}{r}cosθ=yr

And, when we are working with the Unit Circle, r = 1, so the ratios simplify to LaTeX: \cos\theta=x\:and\:sin\theta=ycosθ=xandsinθ=y.

Well, what if we wanted to graph the function LaTeX: f\left(t\right)=\sin\left(t\right)f(t)=sin(t)? Let's make a table:

t

0

LaTeX: \frac{\pi}{6}π6

LaTeX: \frac{\pi}{4}π4

LaTeX: \frac{\pi}{3}π3

LaTeX: \frac{\pi}{2}π2

LaTeX: \frac{2\pi}{3}2π3

LaTeX: \frac{3\pi}{4}3π4

LaTeX: \frac{5\pi}{6}5π6

LaTeX: \piπ

LaTeX: f\left(t\right)=\sin tf(t)=sint

0

LaTeX: \frac{1}{2}=0.512=0.5

LaTeX: \frac{\sqrt[]{2}}{2}\approx.70722.707

LaTeX: \frac{\sqrt[]{3}}{2}\approx0.866320.866

1

LaTeX: \frac{\sqrt[]{3}}{2}\approx0.866320.866

LaTeX: \frac{\sqrt[]{2}}{2}\approx0.707220.707

LaTeX: \frac{1}{2}\approx0.5120.5

0

 

t

LaTeX: \frac{7\pi}{6}7π6

LaTeX: \frac{5\pi}{4}5π4

LaTeX: \frac{4\pi}{3}4π3

LaTeX: \frac{3\pi}{2}3π2

LaTeX: \frac{5\pi}{3}5π3

LaTeX: \frac{7\pi}{4}7π4

LaTeX: \frac{11\pi}{6}11π6

LaTeX: 2\pi2π

LaTeX: f\left(t\right)=\sin tf(t)=sint

LaTeX: -\frac{1}{2}=-0.512=0.5

LaTeX: -\frac{\sqrt[]{2}}{2}\approx-0.707220.707

LaTeX: -\frac{\sqrt[]{3}}{2}\approx-0.866320.866

-1

LaTeX: -\frac{\sqrt[]{3}}{2}\approx-0.866320.866

LaTeX: -\frac{\sqrt[]{2}}{2}\approx-0.707220.707

LaTeX: -\frac{1}{2}=-0.512=0.5

0

Now, let's plot these points:

sine curve plotted with points on graph

And, if we finished the graph of LaTeX: f\left(t\right)=\sin\left(t\right)f(t)=sin(t), our graph would look like this:

sine curve plotted with points and finished on graph

Let's answer a few questions about the graph of LaTeX: f\left(t\right)=\sin\left(t\right)f(t)=sin(t).

1. What is the domain of LaTeX: f\left(t\right)=\sin\left(t\right)f(t)=sin(t)?

  • Solution: all real numbers

2. What is the range of LaTeX: f\left(t\right)=\sin\left(t\right)f(t)=sin(t)?

  • Solution: [-1, 1]

3. Is LaTeX: f\left(t\right)=\sin\left(t\right)f(t)=sin(t) even, odd, or neither?

  • Solution: odd

Watch this video to discuss the symmetry of LaTeX: f\left(t\right)=\sin\left(t\right)f(t)=sin(t).

Now, what if we wanted to graph the function,LaTeX: f\left(t\right)=\cos\left(t\right)f(t)=cos(t)? Let's make a table:

t

0

LaTeX: \frac{\pi}{6}π6

LaTeX: \frac{\pi}{4}π4

LaTeX: \frac{\pi}{3}π3

LaTeX: \frac{\pi}{2}π2

LaTeX: \frac{2\pi}{3}2π3

LaTeX: \frac{3\pi}{4}3π4

LaTeX: \frac{5\pi}{6}5π6

LaTeX: \piπ

LaTeX: f\left(t\right)=\cos tf(t)=cost

1

LaTeX: \frac{\sqrt[]{3}}{2}\approx0.866320.866

LaTeX: \frac{\sqrt[]{2}}{2}\approx0.707220.707

LaTeX: \frac{1}{2}=0.512=0.5

0

LaTeX: -\frac{1}{2}=-0.512=0.5

LaTeX: -\frac{\sqrt[]{2}}{2}\approx-0.707220.707

LaTeX: -\frac{\sqrt[]{3}}{2}\approx-0.866320.866

-1

 

t

LaTeX: \frac{7\pi}{6}7π6

LaTeX: \frac{5\pi}{4}5π4

LaTeX: \frac{4\pi}{3}4π3

LaTeX: \frac{3\pi}{2}3π2

LaTeX: \frac{5\pi}{3}5π3

LaTeX: \frac{7\pi}{4}7π4

LaTeX: \frac{11\pi}{6}11π6

LaTeX: 2\pi2π

LaTeX: f\left(t\right)=\cos tf(t)=cost

LaTeX: -\frac{\sqrt[]{3}}{2}\approx-0.866320.866

LaTeX: -\frac{\sqrt[]{2}}{2}\approx-0.707220.707

LaTeX: -\frac{1}{2}=-0.512=0.5

0

LaTeX: \frac{1}{2}=0.512=0.5

LaTeX: \frac{\sqrt[]{2}}{2}\approx0.707220.707

LaTeX: \frac{\sqrt[]{3}}{2}\approx0.866320.866

1

Now, let's plot these points:

cosine curve plotted with points on graph

And, if we finished the graph of LaTeX: f\left(t\right)=\cos\left(t\right)f(t)=cos(t), our graph would look like this:

cosine curve plotted with points and finished on graph

Let's answer a few questions about the graph of LaTeX: f\left(t\right)=\cos\left(t\right)f(t)=cos(t).

1. What is the domain of LaTeX: f\left(t\right)=\cos\left(t\right)f(t)=cos(t)?

  • Solution: all real numbers

2. What is the range of LaTeX: f\left(t\right)=\cos\left(t\right)f(t)=cos(t)?

  • Solution: [-1, 1]

3. Is LaTeX: f\left(t\right)=\cos\left(t\right)f(t)=cos(t) even, odd, or neither?

  • Solution: even

Watch this video to discuss the symmetry of LaTeX: f\left(t\right)=\cos\left(t\right)f(t)=cos(t).

When graphing LaTeX: f\left(t\right)=\sin\left(t\right)f(t)=sin(t) and LaTeX: f\left(t\right)=\cos\left(t\right)f(t)=cos(t) it is not necessary to graph all of the points we did in the images above. However, we'd like to focus on 5 critical points shown below:

critical points of f(t)=sin t (0,0), (pi/2, 0), (3pi/2, -1)(2pi, 0) with coordinating graph

critical points of f(t)=cos t (0,1), (pi/2, 0), (pi, -1)(3pi/2, 0)(2pi, 1) with coordinating graph

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS