VQ - Scalar Multiples of Vectors Lesson

Math_Lesson_TopBanner.pngScalar Multiples of Vectors

We often want to multiply a vector by a scalar, or number. This just means we are changing the size of the vector!

Vector a

vector a on graph

Let's say we multiply vector a by a scale factor of 2, we can see that 2a is twice as long as a, but still headed in the same direction!

vector a and 1a on graph

What if multiply vector a by 1/2 then 1/2 a is half as long as vector a, but still headed in the same direction!

vector ½a and 1a on graph

The only time a scalar multiple can change the direction of a vector is if that number is negative. Take a look at -2a

vector a and -2a on graph

So, you can see that to calculate the magnitude of a vector multiplied by a scalar is to multiply that number by the magnitude of the vector.  To summarize, the magnitude of a vector, v, multiplied by a scalar, c, gives us:

.         LaTeX: \lVert{cv}\rVert=\left|c\right|\cdot \lVert{v}\rVert.
In other words, the absolute value of c is multiplied by the magnitude of vector v.

Now it's time for you try some problems.

Given the components of the vectors below, find the requested scalar multiples.

Problem: Given LaTeX: \vec{a}=<-2, 3>\vec{a}=<-2, 3>, find 3a.

  • Solution: LaTeX: 3\vec{a}=<-6, 9>3\vec{a}=<-6, 9>

Problem: Given LaTeX: \vec{b}=<1, 4>\vec{b}=<1, 4>, find ½b

  • Solution:  LaTeX: \frac{1}{2}\vec{b}=<\frac{1}{2}, 2>\frac{1}{2}\vec{b}=<\frac{1}{2}, 2>

Problem: Given LaTeX: \vec{d}=<0, 2>\vec{d}=<0, 2>, find -4d

  • Solution: LaTeX: -4\vec{d}=<0 -8>-4\vec{d}=<0 -8>

Problem: Given LaTeX: \vec{a}=<5, -3>\vec{a}=<5, -3>, find 2a

  • Solution:  LaTeX: -2\vec{a}=<10, -6>-2\vec{a}=<10, -6>

Vectors can be represented as vertical matrices. So, the vector LaTeX: \left<2,\:7\right>\left<2,\:7\right> would be written as the matrix LaTeX: \begin{bmatrix}
2\\
7
\end{bmatrix}\begin{bmatrix} 2\\ 7 \end{bmatrix}.

So, what if we had a vector that had 3 components, LaTeX: \left<2,\:1,\:3\right>\left<2,\:1,\:3\right> meaning the vector moved 2 units along the x-axis, 1 unit along the y-axis, and 3 units along the z-axis, we would write it as the matrix LaTeX: \begin{bmatrix}
2\\
1 \\
3
\end{bmatrix}\begin{bmatrix} 2\\ 1 \\ 3 \end{bmatrix}.

Write the vectors below as matrices.

Problem: LaTeX: <-2, 0, 4><-2, 0, 4>

  • Solution: LaTeX: \begin{bmatrix}
-2 \\
0 \\
4
\end{bmatrix}\begin{bmatrix} -2 \\ 0 \\ 4 \end{bmatrix}

Problem: LaTeX: <3, -7><3, -7>

  • Solution: LaTeX: \begin{bmatrix}
3 \\
-7
\end{bmatrix}\begin{bmatrix} 3 \\ -7 \end{bmatrix}

Problem: LaTeX: <-1, 5><-1, 5>

  • Solution: LaTeX: \begin{bmatrix}
-1 \\
5
\end{bmatrix}\begin{bmatrix} -1 \\ 5 \end{bmatrix}

Problem: LaTeX: <1, -3,  6><1, -3, 6>

  • Solution: LaTeX: \begin{bmatrix}
1 \\
-3 \\
6
\end{bmatrix}\begin{bmatrix} 1 \\ -3 \\ 6 \end{bmatrix}

 

We can use matrices to transform vectors. We talked about this a little bit during our matrix unit, but let's take a closer look at it!

 

You'll explore transforming vectors more in the handout below, but for now – let's practice multiplying a few vectors. 

Problem: Given the matrix LaTeX: \begin{bmatrix}
-1 & 1 \\
0 & 2\\
\end{bmatrix}\begin{bmatrix} -1 & 1 \\ 0 & 2\\ \end{bmatrix} multiply to the vector LaTeX: <3, 1><3, 1>

  • Solution: LaTeX: \begin{bmatrix}
-2\\
2
\end{bmatrix}\begin{bmatrix} -2\\ 2 \end{bmatrix}

Problem: Given the matrix LaTeX: \begin{bmatrix}
1 & -1 \\
3 & 0\\
\end{bmatrix}\begin{bmatrix} 1 & -1 \\ 3 & 0\\ \end{bmatrix} multiply to the vector LaTeX: <4, -3><4, -3>

  • Solution: LaTeX: \begin{bmatrix}
7 \\
12
\end{bmatrix}\begin{bmatrix} 7 \\ 12 \end{bmatrix}

Problem: Given the matrix LaTeX: \begin{bmatrix}
4  & 4 \\
-1 & 2\\
\end{bmatrix}\begin{bmatrix} 4 & 4 \\ -1 & 2\\ \end{bmatrix} multiply to the vector LaTeX: <2, 1><2, 1>

  • Solution: LaTeX: \begin{bmatrix}
12 \\
0
\end{bmatrix}\begin{bmatrix} 12 \\ 0 \end{bmatrix}

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS