TIE - Half Angle Identities Lesson

Math_Lesson_TopBanner.png Half Angle Identities

The last set of identities we will use are the Half-Angle Identities:

LaTeX: \sin\left(\frac{\theta}{2}\right)=\pm\sqrt[]{\frac{1-\cos\theta}{2}}\\\cos\left(\frac{\theta}{2}\right)=\pm\sqrt[]{\frac{1+\cos\theta}{2}}sin(θ2)=±1cosθ2cos(θ2)=±1+cosθ2

LaTeX: \tan\left(\frac{\theta}{2}\right)=\pm\sqrt[]{\frac{1-\cos\theta}{1+\cos\theta}}\\
\tan\left(\frac{\theta}{2}\right)=\frac{1-\cos\theta\:}{\sin\theta}\\
\tan\left(\frac{\theta}{2}\right)=\frac{\sin\theta}{1+\cos\theta}\:tan(θ2)=±1cosθ1+cosθtan(θ2)=1cosθsinθtan(θ2)=sinθ1+cosθ

*To determine which sign to use, you should check the quadrant in which LaTeX: \frac{\theta}{2}θ2 lies.

Let's prove LaTeX: \cos\left(\frac{\theta}{2}\right)=\pm\sqrt[]{\frac{1+\cos\theta}{2}}\:cos(θ2)=±1+cosθ2, we will use our double angle formula for cosine:LaTeX: \cos\left(2\theta\right)=2\cos^2\theta-1cos(2θ)=2cos2θ1.

  1. In cos(2θ) = 2cos²θ - 1, we know that θ is half of 2θ, so let's set 2θ = x, so that means that θ = x/2. LaTeX: \cos x=2\cos^2\left(\frac{x}{2}\right)-1cosx=2cos2(x2)1
  2. So now let's rearrange this formula to isolate the half angle. LaTeX: \cos x=2\cos^2\left(\frac{x}{2}\right)-1\\
1+\cos x=2\cos^2\left(\frac{x}{2}\right)\\
\frac{1+\cos x}{2}=\cos^2\left(\frac{x}{2}\right)\\
\pm\sqrt[]{\frac{1+\cos x}{2}}=\cos\left(\frac{x}{2}\right)cosx=2cos2(x2)11+cosx=2cos2(x2)1+cosx2=cos2(x2)±1+cosx2=cos(x2)

Watch this video to try using the half-angle formula:

Find the exact value of each expression: 

1. LaTeX: \sin75°sin75°

  • Solution: LaTeX: \frac{\sqrt[]{2+\sqrt[]{3}}}{2}2+32

2. LaTeX: \tan\frac{7\Pi}{12}tan7Π12

  • Solution: LaTeX: -2-\sqrt[]{3}23

3. LaTeX: \sin22.5°sin22.5°

  • Solution:  LaTeX: \frac{\sqrt[]{2-\sqrt[]{2}}}{2}222

Let's try solving an equation using a half-angle identity, watch this video:

Solve each equation on the interval LaTeX: \left[0,\:2\pi\right)[0,2π).

1. Problem: LaTeX: 2\sin^2\frac{x}{2}+\cos x=1+\sin x2sin2x2+cosx=1+sinx

  • Solution: LaTeX: \left\{0,\:\pi\right\}{0,π}

2. Problem: LaTeX: \sin^2\frac{x}{2}=\cos^2\frac{x}{2}sin2x2=cos2x2

  • Solution: LaTeX: \left\{\frac{\pi}{2},\:\frac{3\pi}{2}\right\}{π2,3π2}

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS