TEF - Inverse Tangent Lesson

Math_Lesson_TopBanner.png Inverse Tangent

Let's review a little bit of information about LaTeX: f\left(x\right)=\tan xf(x)=tanx.

1. What is the domain of LaTeX: f\left(x\right)=\tan xf(x)=tanx?

  • Solution: all real numbers, LaTeX: x\ne\frac{\pi}{2}+\pi nxπ2+πn

2. What is the range of LaTeX: f\left(x\right)=\tan xf(x)=tanx? 

  • Solution: LaTeX: \left(-\infty,\:\infty\right)(,)

Watch this video to get an idea of how we will restrict the domain of LaTeX: f\left(x\right)=\tan xf(x)=tanx to create LaTeX: f^{\:-1}\left(x\right)=\tan^{-1}xf1(x)=tan1x.

So, now that you understand where LaTeX: f\left(x\right)=\tan^{-1}xf(x)=tan1x it is important to know some of these facts:

  1. We can call the inverse function LaTeX: f\left(x\right)=\tan^{-1}xf(x)=tan1x or LaTeX: f\left(x\right)=arc\:\tan xf(x)=arctanx.
  2. The domain of LaTeX: f\left(x\right)=\tan^{-1}x\:is\:\left(-\infty,\:\infty\right)f(x)=tan1xis(,).
  3. The range of LaTeX: f\left(x\right)=\tan^{-1}x\:is\:\left(-\frac{\Pi}{2},\:\frac{\Pi}{2}\right)f(x)=tan1xis(Π2,Π2).

cycle of inverse tangent
tan(angle)=ratio
tan to -1(ratio)=angle
the input becomes the output
the output becomes the input

tangent unit circle indicating positive tangent and negative tangent

Watch this video to practice a few more problems:

Try these problems to check your understanding:

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS