ILAM - Inverse Matrices Lesson

Math_Lesson_TopBanner.png Inverse Matrices

Before we discuss inverse matrices, let's talk about the determinant of a matrix. The determinant is the difference of the product of the two diagonals. We will calculate the determinant of a 2x2 matrix by hand, but for anything greater, we can use the calculator! We can only find the determinant of square matrices (remember a square matrix contains the same number of rows and columns)!

If LaTeX: A=
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}A=[abcd], then LaTeX: \det\left(A\right)=\left|A\right|=
\begin{vmatrix}
a & b \\
c & d
\end{vmatrix}
=ad-cbdet

Watch this video to determine how to find the determinant of a 3 x 3 matrix.

Two matrices are considered inverses if, when multiplied (both ways), they create an identity matrix. An identity matrix is a square matrix with 1's on the main diagonal and 0's everywhere else.

 LaTeX: \begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 &0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0& 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 &0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0& 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ \end{bmatrix}

Determine whether LaTeX: A=
\begin{bmatrix}
-3 & 2 \\
-2 & 1
\end{bmatrix}
\text{and}\: B=
\begin{bmatrix}
1 & -2 \\
2 & -3
\end{bmatrix}A= \begin{bmatrix} -3 & 2 \\ -2 & 1 \end{bmatrix} \text{and}\: B= \begin{bmatrix} 1 & -2 \\ 2 & -3 \end{bmatrix} are inverse matrices.

If AB = BA = I (the identity matrix), then A and B are inverse matrices.

Step 1: Find AB

LaTeX: AB=
\begin{bmatrix}
-3 & 2 \\
-2 & 1
\end{bmatrix}
A=
\begin{bmatrix}
1 & -2 \\
2 & 3
\end{bmatrix}
=
A=
\begin{bmatrix}
-3+4 & 6+(-6) \\
-2+2 & 4+(-3) 
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}AB= \begin{bmatrix} -3 & 2 \\ -2 & 1 \end{bmatrix} A= \begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} = A= \begin{bmatrix} -3+4 & 6+(-6) \\ -2+2 & 4+(-3) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Step 2: Find BA

LaTeX: AB=
\begin{bmatrix}
1 & -2 \\
2 & -3
\end{bmatrix}
\begin{bmatrix}
-3 & 2 \\
-2 & 1
\end{bmatrix}
=
\begin{bmatrix}
-3+4 & 2+(-2) \\
-6+6 & 4+(-3) 
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}AB= \begin{bmatrix} 1 & -2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -3+4 & 2+(-2) \\ -6+6 & 4+(-3) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Since AB = BA = I, we can confirm that LaTeX: B=A^{-1}\:and\:A=B^{-1}B=A^{-1}\:and\:A=B^{-1}.

Determine whether A and B are inverse matrices. 

1. Problem: LaTeX: A=
\begin{bmatrix}
-4 & 3 \\
3 & -2
\end{bmatrix}
\text{and}\:B=
\begin{bmatrix}
2 & 3 \\
3 & 4
\end{bmatrix}A= \begin{bmatrix} -4 & 3 \\ 3 & -2 \end{bmatrix} \text{and}\:B= \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}

  • Solution: yes

2. Problem: LaTeX: A=
\begin{bmatrix}
6 & 2 \\
2 & 1
\end{bmatrix}
\text{and}\:B=
\begin{bmatrix}
1 & -2 \\
-2 & 6
\end{bmatrix}A= \begin{bmatrix} 6 & 2 \\ 2 & 1 \end{bmatrix} \text{and}\:B= \begin{bmatrix} 1 & -2 \\ -2 & 6 \end{bmatrix}

  • Solution: no

So, let's try and find the inverse of a matrix by hand. Here is the formula:

LaTeX: Let\:A=
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\text{then}\:A^{-1} =\frac{1}{ad-cb}
\begin{bmatrix}
d & -b \\
-c & a
\end{bmatrix}Let\:A= \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{then}\:A^{-1} =\frac{1}{ad-cb} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}

Notice that you are using the determinant in this formula!

If the determinant of a matrix is 0, then the inverse does not exist and the matrix is considered to be singular.

Watch this video to try an example:

Math_AdvAlgConceptsConnectBottomBanner.pngIMAGES CREATED BY GAVS