ILAM - Inverse Matrices Lesson
Inverse Matrices
Before we discuss inverse matrices, let's talk about the determinant of a matrix. The determinant is the difference of the product of the two diagonals. We will calculate the determinant of a 2x2 matrix by hand, but for anything greater, we can use the calculator! We can only find the determinant of square matrices (remember a square matrix contains the same number of rows and columns)!
If A=[abcd], then
det
Watch this video to determine how to find the determinant of a 3 x 3 matrix.
Two matrices are considered inverses if, when multiplied (both ways), they create an identity matrix. An identity matrix is a square matrix with 1's on the main diagonal and 0's everywhere else.
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 &0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0& 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix}
Determine whether A=
\begin{bmatrix}
-3 & 2 \\
-2 & 1
\end{bmatrix}
\text{and}\: B=
\begin{bmatrix}
1 & -2 \\
2 & -3
\end{bmatrix} are inverse matrices.
If AB = BA = I (the identity matrix), then A and B are inverse matrices.
Step 1: Find AB
AB=
\begin{bmatrix}
-3 & 2 \\
-2 & 1
\end{bmatrix}
A=
\begin{bmatrix}
1 & -2 \\
2 & 3
\end{bmatrix}
=
A=
\begin{bmatrix}
-3+4 & 6+(-6) \\
-2+2 & 4+(-3)
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
Step 2: Find BA
AB=
\begin{bmatrix}
1 & -2 \\
2 & -3
\end{bmatrix}
\begin{bmatrix}
-3 & 2 \\
-2 & 1
\end{bmatrix}
=
\begin{bmatrix}
-3+4 & 2+(-2) \\
-6+6 & 4+(-3)
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
Since AB = BA = I, we can confirm that B=A^{-1}\:and\:A=B^{-1}.
Determine whether A and B are inverse matrices.
- Solution: yes
- Solution: no
So, let's try and find the inverse of a matrix by hand. Here is the formula:
Let\:A=
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\text{then}\:A^{-1} =\frac{1}{ad-cb}
\begin{bmatrix}
d & -b \\
-c & a
\end{bmatrix}
Notice that you are using the determinant in this formula!
If the determinant of a matrix is 0, then the inverse does not exist and the matrix is considered to be singular.
Watch this video to try an example:
IMAGES CREATED BY GAVS