CSPE - Polar Form Lesson

Math_Lesson_TopBanner.png Polar Form

So far, we've dealt with rectangular representations of complex numbers z = a + bi. However, we can also represent complex numbers in polar form.

Consider the complex number z = 3 + 2i, we know that to graph that, we move 3 units to the right and 2 units up. We can also write that number in polar form using r (the modulus of z) and θ, the direction of the point (starting at the positive ­x-axis).

image of an angle/triangle on graph

Let's consider a general case:

image of triangle abr plotted on graph with point (a, b)

By the Pythagorean theorem, we know that: LaTeX: r^2=a^2+b^2r2=a2+b2

Using trig ratios, we know that:

LaTeX: \cos\theta=\frac{a}{r}\:and\:\sin\theta=\frac{b}{r}\\
r\cos\theta=a\:and\:r\sin\theta=bcosθ=arandsinθ=brrcosθ=aandrsinθ=b

So, if we take our complex numbers and make some substitutions, we can determine that polar form of a complex number is:

LaTeX: z=a+bi\:\Longrightarrow\:r\cos\theta+i\left(r\sin\theta\right)=r\left(\cos\theta+i\sin\theta\right)z=a+bircosθ+i(rsinθ)=r(cosθ+isinθ). This final expression can be condensed to LaTeX: r\:cis\:\theta.rcisθ.

In addition, we can calculate θ by using the trig ratio: LaTeX: \tan\theta=\frac{b}{a}tanθ=ba. When finding LaTeX: \theta,\:θ,you will need to add 180° or π when a is negative. It is a good idea to plot the complex number and make sure LaTeX: \theta\:θlands in the correct quadrant.

 

While points in rectangular form and polar form are actually in the same location, we can use different types of graphs so that the points are easier to plot.

Rectangular Graph

Polar Graph

image of real/imaginary axis on a rectangular grid

image of real/imaginary axis on a polar grid

 

Let's use this information to write some complex numbers in polar form:

Write each complex number below in polar form.

Problem: LaTeX: 2+2i\sqrt[]{3}2+2i3

  • Solution: LaTeX: 4\left(\cos60°\:+i\sin60°\right)4\left(\cos60°\:+i\sin60°\right)

Problem: LaTeX: -\frac{3}{2}-\frac{3\sqrt[]{3}}{2}i-\frac{3}{2}-\frac{3\sqrt[]{3}}{2}i

  • Solution: LaTeX: 3\left(\cos\frac{4\pi}{3}+i\sin\frac{4\pi}{3}\right)3\left(\cos\frac{4\pi}{3}+i\sin\frac{4\pi}{3}\right)

Problem: LaTeX: -\frac{5}{2}+\frac{5\sqrt[]{3}}{2}i-\frac{5}{2}+\frac{5\sqrt[]{3}}{2}i

  • Solution: LaTeX: 5\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)5\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)

Problem: LaTeX: 3\sqrt[]{2}-3i\sqrt[]{2}3\sqrt[]{2}-3i\sqrt[]{2}

  • Solution: LaTeX: 6\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)6\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)

Convert each polar form to complex numbers.

Problem: LaTeX: 5\left(\cos300°+i\sin300°\right)5\left(\cos300°+i\sin300°\right)

  • Solution: LaTeX: \frac{5}{2}-\frac{5\sqrt[]{3}}{2}i\frac{5}{2}-\frac{5\sqrt[]{3}}{2}i

Problem: LaTeX: 5\left(\cos\frac{3\pi}{2}+i\sin\frac{3\pi}{2}\right)5\left(\cos\frac{3\pi}{2}+i\sin\frac{3\pi}{2}\right)

  • Solution: -5i

Problem: LaTeX: 2\left(\cos60°+i\sin60°\right)2\left(\cos60°+i\sin60°\right)

  • Solution: LaTeX: 1+i\sqrt[]{3}1+i\sqrt[]{3}

Problem: LaTeX: 5\left(\cos30°+i\sin30°\right)5\left(\cos30°+i\sin30°\right)

  • Solution: LaTeX: \frac{5\sqrt[]{3}}{2}+\frac{5}{2}i\frac{5\sqrt[]{3}}{2}+\frac{5}{2}i

 

At times, you might see the polar form of a complex number represented as LaTeX: r\:cis\:\theta.r\:cis\:\theta.

The polar form of a complex number: LaTeX: r\left(\cos\theta+i\sin\theta\right)\:\Longrightarrow\:r\:cis\:\thetar\left(\cos\theta+i\sin\theta\right)\:\Longrightarrow\:r\:cis\:\theta

So, let's try using that representation to graph some complex numbers on the polar plane.

Convert Rectangular Equations to Polar Equations

Now that we can convert between polar coordinate and rectangular coordinates, we will learn to convert polar and rectangular equations.  We will use the same procedure used to convert points between the coordinate systems. Let's take a look at the examples below.

Example: Write the rectangular equation in polar form.  LaTeX: x^2+y^2=16x^2+y^2=16

The goal is to eliminate x and y and reintroduce LaTeX: rr and LaTeX: \theta\theta into the equation. In the previous examples above, we learned that LaTeX: x=r\cos\thetax=r\cos\theta and LaTeX: y=r\sin\thetay=r\sin\theta so we will substitute these into the equation.

LaTeX: x^2+y^2=16x^2+y^2=16
LaTeX: (r\cos\theta)^2+(r\sin\theta)^2=16(r\cos\theta)^2+(r\sin\theta)^2=16 Substitute  LaTeX: x=r\cos\thetax=r\cos\theta and LaTeX: y=r\sin\thetay=r\sin\theta 
LaTeX: r^2\cos^2\theta+r^2\sin^2\theta=16r^2\cos^2\theta+r^2\sin^2\theta=16 Simplify 
LaTeX: r^2(\cos^2\theta+\sin^2\theta)=16r^2(\cos^2\theta+\sin^2\theta)=16 Factor out LaTeX: r^2r^2
LaTeX: r^2(1)=16r^2(1)=16 Use the Pythagorean Identity to substitute  LaTeX: \cos^2\theta+\sin^2\theta=1\cos^2\theta+\sin^2\theta=1
LaTeX: r=\pm4r=\pm4 Square root both sides of the equation.

 

We can graph both equations and see that they are the same.

LaTeX: x^2+y^2=16x^2+y^2=16 LaTeX: r=4r=4 and LaTeX: r=-4r=-4
RectangularGraph.jpg PolarGraph.jpg

Let's try a different example.

Rewrite LaTeX: x^2+y^2=3yx^2+y^2=3y as a polar equation.

This example does not have variable r so we must reintroduce it along with LaTeX: \theta\theta.  The standard equation in rectangular form is LaTeX: x^2+y^2=r^2x^2+y^2=r^2 so we will use this to substitute.

LaTeX: x^2+y^2=3yx^2+y^2=3y
LaTeX: r^2=3yr^2=3y Since LaTeX: x^2+y^2=r^2x^2+y^2=r^2, we can substitute LaTeX: r^2=3yr^2=3y
LaTeX: r^2=3r\sin\thetar^2=3r\sin\theta Substitute LaTeX: y=r\sin\thetay=r\sin\theta
LaTeX: r^2-3r\sin\theta=0r^2-3r\sin\theta=0 Subtract LaTeX: 3r\sin\theta3r\sin\theta on both sides to set the equation equal to zero.
LaTeX: r(r-3\sin\theta)=0r(r-3\sin\theta)=0 Factor out and solve for r.

LaTeX: r=0r=0 and

LaTeX: r=3\sin\thetar=3\sin\theta

LaTeX: r=0r=0 represents the point (0, 0) so this is not the solution. Therefore, LaTeX: r=3\sin\thetar=3\sin\theta is the polar equation.

 We can see that the graphs of both equations are the same.

LaTeX: x^2+y^2=3yx^2+y^2=3y  LaTeX: r=3\sin\thetar=3\sin\theta
RectangularGraph2.jpg PolarGraph2.jpg

 

Time to practice on your own! Try these problems below and check your answers with the solutions shown.

Convert Polar Equations to Rectangular Equations

Now let's learn how to convert polar equations to rectangular equations! Here is an example.

Rewrite LaTeX: r=4\cos\thetar=4\cos\theta in rectangular form.  Remember that the equation in rectangular form is LaTeX: x^2+y^2=r^2x^2+y^2=r^2. Our goal is is to eliminate r and LaTeX: \theta\theta and reintroduce x and y into the equation.

LaTeX: r=4\cos\thetar=4\cos\theta
LaTeX: r^2=4r\cos\thetar^2=4r\cos\theta Multiply both sides by r.
LaTeX: x^2+y^2=4r\cos\thetax^2+y^2=4r\cos\theta Substitute this into the equation LaTeX: x^2+y^2=r^2x^2+y^2=r^2.
LaTeX: x^2+y^2=4xx^2+y^2=4x Recall that LaTeX: x=r\cos\thetax=r\cos\theta
LaTeX: x^2-4x+y^2=0x^2-4x+y^2=0 Subtract 4x on both sides to set the equation equal to zero.

LaTeX: x^2-4x+4+y^2=4x^2-4x+4+y^2=4

LaTeX: (x-2)^2+y^2=4(x-2)^2+y^2=4

Complete the square to rewrite the equation in standard form.

Your turn to try!  Complete these practice problems below.

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS