CSPE - Polar Form Lesson

Math_Lesson_TopBanner.png Polar Form

So far, we've dealt with rectangular representations of complex numbers z = a + bi. However, we can also represent complex numbers in polar form.

Consider the complex number z = 3 + 2i, we know that to graph that, we move 3 units to the right and 2 units up. We can also write that number in polar form using r (the modulus of z) and θ, the direction of the point (starting at the positive ­x-axis).

image of an angle/triangle on graph

Let's consider a general case:

image of triangle abr plotted on graph with point (a, b)

By the Pythagorean theorem, we know that: LaTeX: r^2=a^2+b^2r2=a2+b2

Using trig ratios, we know that:

LaTeX: \cos\theta=\frac{a}{r}\:and\:\sin\theta=\frac{b}{r}\\
r\cos\theta=a\:and\:r\sin\theta=bcosθ=arandsinθ=brrcosθ=aandrsinθ=b

So, if we take our complex numbers and make some substitutions, we can determine that polar form of a complex number is:

LaTeX: z=a+bi\:\Longrightarrow\:r\cos\theta+i\left(r\sin\theta\right)=r\left(\cos\theta+i\sin\theta\right)z=a+bircosθ+i(rsinθ)=r(cosθ+isinθ). This final expression can be condensed to LaTeX: r\:cis\:\theta.rcisθ.

In addition, we can calculate θ by using the trig ratio: LaTeX: \tan\theta=\frac{b}{a}tanθ=ba. When finding LaTeX: \theta,\:θ,you will need to add 180° or π when a is negative. It is a good idea to plot the complex number and make sure LaTeX: \theta\:θlands in the correct quadrant.

 

While points in rectangular form and polar form are actually in the same location, we can use different types of graphs so that the points are easier to plot.

Rectangular Graph

Polar Graph

image of real/imaginary axis on a rectangular grid

image of real/imaginary axis on a polar grid

 

Let's use this information to write some complex numbers in polar form:

Write each complex number below in polar form.

Problem: LaTeX: 2+2i\sqrt[]{3}2+2i3

  • Solution: LaTeX: 4\left(\cos60°\:+i\sin60°\right)4(cos60°+isin60°)

Problem: LaTeX: -\frac{3}{2}-\frac{3\sqrt[]{3}}{2}i32332i

  • Solution: LaTeX: 3\left(\cos\frac{4\pi}{3}+i\sin\frac{4\pi}{3}\right)3(cos4π3+isin4π3)

Problem: LaTeX: -\frac{5}{2}+\frac{5\sqrt[]{3}}{2}i52+532i

  • Solution: LaTeX: 5\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)5(cos2π3+isin2π3)

Problem: LaTeX: 3\sqrt[]{2}-3i\sqrt[]{2}323i2

  • Solution: LaTeX: 6\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)6(cos7π4+isin7π4)

Convert each polar form to complex numbers.

Problem: LaTeX: 5\left(\cos300°+i\sin300°\right)5(cos300°+isin300°)

  • Solution: LaTeX: \frac{5}{2}-\frac{5\sqrt[]{3}}{2}i52532i

Problem: LaTeX: 5\left(\cos\frac{3\pi}{2}+i\sin\frac{3\pi}{2}\right)5(cos3π2+isin3π2)

  • Solution: -5i

Problem: LaTeX: 2\left(\cos60°+i\sin60°\right)2(cos60°+isin60°)

  • Solution: LaTeX: 1+i\sqrt[]{3}1+i3

Problem: LaTeX: 5\left(\cos30°+i\sin30°\right)5(cos30°+isin30°)

  • Solution: LaTeX: \frac{5\sqrt[]{3}}{2}+\frac{5}{2}i532+52i

 

At times, you might see the polar form of a complex number represented as LaTeX: r\:cis\:\theta.rcisθ.

The polar form of a complex number: LaTeX: r\left(\cos\theta+i\sin\theta\right)\:\Longrightarrow\:r\:cis\:\thetar(cosθ+isinθ)rcisθ

So, let's try using that representation to graph some complex numbers on the polar plane.

Convert Rectangular Equations to Polar Equations

Now that we can convert between polar coordinate and rectangular coordinates, we will learn to convert polar and rectangular equations.  We will use the same procedure used to convert points between the coordinate systems. Let's take a look at the examples below.

Example: Write the rectangular equation in polar form.  LaTeX: x^2+y^2=16x2+y2=16

The goal is to eliminate x and y and reintroduce LaTeX: rr and LaTeX: \thetaθ into the equation. In the previous examples above, we learned that LaTeX: x=r\cos\thetax=rcosθ and LaTeX: y=r\sin\thetay=rsinθ so we will substitute these into the equation.

LaTeX: x^2+y^2=16x2+y2=16
LaTeX: (r\cos\theta)^2+(r\sin\theta)^2=16(rcosθ)2+(rsinθ)2=16 Substitute  LaTeX: x=r\cos\thetax=rcosθ and LaTeX: y=r\sin\thetay=rsinθ 
LaTeX: r^2\cos^2\theta+r^2\sin^2\theta=16r2cos2θ+r2sin2θ=16 Simplify 
LaTeX: r^2(\cos^2\theta+\sin^2\theta)=16r2(cos2θ+sin2θ)=16 Factor out LaTeX: r^2r2
LaTeX: r^2(1)=16r2(1)=16 Use the Pythagorean Identity to substitute  LaTeX: \cos^2\theta+\sin^2\theta=1cos2θ+sin2θ=1
LaTeX: r=\pm4r=±4 Square root both sides of the equation.

 

We can graph both equations and see that they are the same.

LaTeX: x^2+y^2=16x2+y2=16 LaTeX: r=4r=4 and LaTeX: r=-4r=4
RectangularGraph.jpg PolarGraph.jpg

Let's try a different example.

Rewrite LaTeX: x^2+y^2=3yx2+y2=3y as a polar equation.

This example does not have variable r so we must reintroduce it along with LaTeX: \thetaθ.  The standard equation in rectangular form is LaTeX: x^2+y^2=r^2x2+y2=r2 so we will use this to substitute.

LaTeX: x^2+y^2=3yx2+y2=3y
LaTeX: r^2=3yr2=3y Since LaTeX: x^2+y^2=r^2x2+y2=r2, we can substitute LaTeX: r^2=3yr2=3y
LaTeX: r^2=3r\sin\thetar2=3rsinθ Substitute LaTeX: y=r\sin\thetay=rsinθ
LaTeX: r^2-3r\sin\theta=0r23rsinθ=0 Subtract LaTeX: 3r\sin\theta3rsinθ on both sides to set the equation equal to zero.
LaTeX: r(r-3\sin\theta)=0r(r3sinθ)=0 Factor out and solve for r.

LaTeX: r=0r=0 and

LaTeX: r=3\sin\thetar=3sinθ

LaTeX: r=0r=0 represents the point (0, 0) so this is not the solution. Therefore, LaTeX: r=3\sin\thetar=3sinθ is the polar equation.

 We can see that the graphs of both equations are the same.

LaTeX: x^2+y^2=3yx2+y2=3y  LaTeX: r=3\sin\thetar=3sinθ
RectangularGraph2.jpg PolarGraph2.jpg

 

Time to practice on your own! Try these problems below and check your answers with the solutions shown.

Convert Polar Equations to Rectangular Equations

Now let's learn how to convert polar equations to rectangular equations! Here is an example.

Rewrite LaTeX: r=4\cos\thetar=4cosθ in rectangular form.  Remember that the equation in rectangular form is LaTeX: x^2+y^2=r^2x2+y2=r2. Our goal is is to eliminate r and LaTeX: \thetaθ and reintroduce x and y into the equation.

LaTeX: r=4\cos\thetar=4cosθ
LaTeX: r^2=4r\cos\thetar2=4rcosθ Multiply both sides by r.
LaTeX: x^2+y^2=4r\cos\thetax2+y2=4rcosθ Substitute this into the equation LaTeX: x^2+y^2=r^2x2+y2=r2.
LaTeX: x^2+y^2=4xx2+y2=4x Recall that LaTeX: x=r\cos\thetax=rcosθ
LaTeX: x^2-4x+y^2=0x24x+y2=0 Subtract 4x on both sides to set the equation equal to zero.

LaTeX: x^2-4x+4+y^2=4x24x+4+y2=4

LaTeX: (x-2)^2+y^2=4(x2)2+y2=4

Complete the square to rewrite the equation in standard form.

Your turn to try!  Complete these practice problems below.

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS