TIE - Double Angle Identities Lesson

Math_Lesson_TopBanner.png Double Angle Identities

Let's derive the double angle identities:

Recall

What if u = v?

LaTeX: \sin\left(u+v\right)=\sin u\cos v+\cos u\sin vsin(u+v)=sinucosv+cosusinv

LaTeX: \sin\left(u+u\right)=\sin u\cos u+\cos u\sin u=2\sinsin(u+u)=sinucosu+cosusinu=2sin

LaTeX: \cos\left(u+v\right)=\cos u\cos v-\sin u\sin vcos(u+v)=cosucosvsinusinv

LaTeX: \cos(u+u)=\cos u\cos u-\sin u\sin\:u\\
=\cos^2u-\sin^2u\\
=2\cos^2u-1\\
=1-2\sin^2ucos(u+u)=cosucosusinusinu=cos2usin2u=2cos2u1=12sin2u

LaTeX: \tan\left(u+v\right)=\frac{\tan u+\tan v}{1-\tan u\tan v}tan(u+v)=tanu+tanv1tanutanv

LaTeX: \tan\left(u+u\right)=\frac{\tan u+\tan u}{1-\tan u\tan u\:}tan(u+u)=tanu+tanu1tanutanu

Double Angle Identities

LaTeX: \sin\left(2\theta\right)=2\sin\theta\cos\theta;\\
\cos\left(2\theta\right)=\cos^2\theta-\sin^2\theta\\
               =2\cos^2\theta-1 \\
       =1-2\sin^2\theta;\\
\tan\left(2\theta\right)=\frac{2\tan\theta}{1-\tan^2\theta}sin(2θ)=2sinθcosθ;cos(2θ)=cos2θsin2θ=2cos2θ1=12sin2θ;tan(2θ)=2tanθ1tan2θ

Let's try this problem:

If LaTeX: \sin\theta=-\frac{7}{25}sinθ=725 and LaTeX: \thetaθ is located in the Quadrant III, find LaTeX: \sin\left(2\theta\right),\:\cos\left(2\theta\right),\:\tan\left(2\theta\right)sin(2θ),cos(2θ),tan(2θ).

1. Since LaTeX: \sin\left(2\theta\right)=\frac{y}{r}=-\frac{7}{25}sin(2θ)=yr=725 and our angle is in the third quadrant, we know that y = -7 and r = 25. So, let's solve for x.

LaTeX: x^2+y^2=r^2\\
x^2+\left(-7\right)^2=\left(25\right)^2\\
:x^2+49=625\\
x^2=576\\
x=\pm24x2+y2=r2x2+(7)2=(25)2:x2+49=625x2=576x=±24

2. Since our angle is in the third quadrant, we know that x = -24 and thus: LaTeX: \cos\theta=-\frac{24}{5}\:and\:\tan\theta=\frac{7}{24}cosθ=245andtanθ=724.

3. So, now let's use these facts to find LaTeX: \sin\left(2\theta\right),\:\cos\left(2\theta\right),\:\tan\left(2\theta\right)sin(2θ),cos(2θ),tan(2θ).

LaTeX: \sin\left(2\theta\right)=2\sin\theta\cos\theta=2\left(-\frac{7}{25}\right)\left(-\frac{24}{25}\right)=\frac{336}{625}\\
\cos\left(2\theta\right)=\cos^2\theta-\sin^2\theta=\left(-\frac{24}{25}\right)^2-\left(-\frac{7}{25}\right)^2=\frac{527}{625} \\
\tan\left(2\theta\right)=\frac{2\tan\theta}{1-\tan^2\theta}\\
=\frac{2\left(\frac{7}{24}\right)}{1-\left(\frac{7}{24}\right)^2}=\frac{336}{527}sin(2θ)=2sinθcosθ=2(725)(2425)=336625cos(2θ)=cos2θsin2θ=(2425)2(725)2=527625tan(2θ)=2tanθ1tan2θ=2(724)1(724)2=336527

Note, you could find LaTeX: \tan2\thetatan2θ using the method below: LaTeX: \tan\left(2\theta\right)=\frac{\sin2\theta}{\cos2\theta}=\frac{\frac{336}{625}}{\frac{527}{625}}=\frac{336}{527}tan(2θ)=sin2θcos2θ=336625527625=336527.

Try the following problem to see if you've got it: 

If ß is located in the Quadrant I, and LaTeX: sin  ß = 3/5,sinß=3/5,  find: 

1. Problem: sin 2ß

  • Solution: 24/25

2. Problem: cos(2ß)

  • Solution: (7/25)

3. tan(2ß)

  • Problem: Solution: (24/7)

Watch this video to try solving a problem using the double angle identities:

Solve each equation on the interval LaTeX: \left[0,\:2\pi\right)[0,2π)

1. Problem: cos2x = -sin²x

  • Solution: LaTeX: \left\{\frac{\pi}{2},\:\frac{3\pi}{2}\right\}{π2,3π2}

2. Problem: tan2x = 2tanx

  • Solution: LaTeX: \left\{0,\:\pi\right\}{0,π}

3. Problem: cos2x - cosx = 2

  • Solution:  LaTeX: \left\{\pi\right\}{π}

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS