TEF - Inverse Cosine Lesson

Math_Lesson_TopBanner.png Inverse Cosine

Let's review a little bit of information about LaTeX: f\left(x\right)=\cos xf(x)=cosx.

1. What is the domain of LaTeX: f\left(x\right)=\cos xf(x)=cosx?

  • Solution: all real numbers

2. What is the range of LaTeX: f\left(x\right)=\cos xf(x)=cosx?

  • Solution: [-1, 1]

Watch this video to get an idea of how we will restrict the domain of LaTeX: f\left(x\right)=\cos x,\:f(x)=cosx,to create LaTeX: f^{-1}\left(x\right)=\cos^{-1}xf1(x)=cos1x.

So, now that you understand where LaTeX: f\left(x\right)=\cos^{-1}xf(x)=cos1xit is important to know some of these facts:

  1. We can call the inverse function LaTeX: f\left(x\right)=\cos^{-1}xf(x)=cos1x  or LaTeX: f\left(x\right)=arc\cos xf(x)=arccosx.
  2. The domain of LaTeX: f\left(x\right)=\cos^{-1}xf(x)=cos1x is [-1, 1].
  3. The range of LaTeX: f\left(x\right)=\cos^{-1}xf(x)=cos1x is LaTeX: \left[0,\:\pi\right][0,π].

cosine inverse function cycle
cos(angle)=ratio
cos to -1(ratio)=angle
the input becomes the output
the output becomes the input

cosine unit circle indicating a negative cosine and positive cosine

Watch this video to practice a few more problems:

Try these problems to check your understanding:

Math_PrecalculusBottomBanner.png IMAGES CREATED BY GAVS