RIN - Operations with Radical Expressions (Lesson)

algebra_Lesson_Top.png

Operations with Radical Expressions

Multiplying Radicals

An expression that has a square root radical is said to be in simplest form when there is no radicand that has a perfect square factor. An expression that has a cube root radical is said to be in simplest form when there is no radicand that has a perfect cube factor.  To multiply radicals, you multiply the coefficients, or the numbers in front of the radicals, and then multiply the values in the radicands. Lastly, you simplify the radicand if possible. 

Examples:

1.  LaTeX: 3\sqrt[]{2}\cdot4\sqrt[]{18}32418         multiply 3 • 4 and 2 • 18

LaTeX: =12\sqrt[]{36}=1236                   the square root of 36 equals 6

LaTeX: =12\cdot6=126

LaTeX: =72=72

 

2. LaTeX: 4\sqrt[]{15}\cdot2\sqrt{3}41523         multiply 4 • 2 and 15 • 3

LaTeX: =8\sqrt{45}=845                    simplify radical 45

LaTeX: =8\sqrt{5}\cdot\sqrt{9}=859             the square root of 9 equal 3

LaTeX: =8\sqrt{5}\cdot3=853                 multiply 8 • 3 

LaTeX: =24\sqrt{5}=245

 

3. LaTeX: 4\sqrt[3]{5}\cdot3\sqrt[3]{25}4353325        multiply 4 • 3 and 5 • 25

LaTeX: =12\sqrt[3]{125}=123125               the cube root of 125 equals 5

LaTeX: =12\cdot5=125

LaTeX: =60=60


Multiplying Radicals Practice

1. LaTeX: 5\sqrt{3}\cdot 10\sqrt{8}53108

2. LaTeX: 2\sqrt{15}\cdot -4\sqrt{12}215412

3. LaTeX: 2\sqrt[3]{9}\cdot 4\sqrt[3]{15}2394315

4. LaTeX: 4\sqrt[3]{-2}\cdot \sqrt[3]{12}432312

TO VIEW THE SOLUTIONS ONCE YOU HAVE PRACTICED, CLICK HERE. Links to an external site.


Adding and Subtracting Radicals

Adding and subtracting radicals is a lot different than multiplying. Radicals have to be the same in order to be added or subtracted. This means that the radicand (value under the radical) and the index (the value of the root - square or cube) must be the same. See below:

Like Radicals:

LaTeX: \sqrt{3}3             LaTeX: 2\sqrt{3}23          LaTeX: -4\sqrt{3}43

LaTeX: \sqrt[3]{5}35             LaTeX: 4\sqrt[3]{5}435           LaTeX: -\sqrt[3]{5}35


NOT Like
Radicals:

LaTeX: \sqrt{5}5          LaTeX: \sqrt[3]{5}35                the indices are different (one is a square root and the other is a cube root) 

LaTeX: \sqrt[2]{5}25             LaTeX: \sqrt[2]{8}28                the radicands are different

LaTeX: \sqrt[3]{6}36           LaTeX: \sqrt[3]{14}314               the radicands are different

 

It's important to know that sometimes the radicals can look different - but could be the same after simplifying. 

 

LaTeX: \sqrt{45}+\sqrt{20}45+20                       these look to be different, but let's simplify them

LaTeX: =\sqrt{9}\sqrt{5}+\sqrt{4}\sqrt{5}=95+45           

LaTeX: =3\sqrt{5}+2\sqrt{5}=35+25                   they are the same and can be added!

LaTeX: =5\sqrt{5}=55

 

Adding and Subtracting Examples:

1. LaTeX: \sqrt[2]{24}+3\sqrt[2]{6}\:224+326 

LaTeX: =\:\sqrt[2]{4}\sqrt[2]{6}+3\sqrt[2]{6}=2426+326                  simplify the radicals

LaTeX: =2\sqrt[2]{6}+3\sqrt[2]{6}=226+326                       they are the same, so we can add the coefficients

LaTeX: =5\sqrt[2]{6}=526                                     note that the radicand remains the same! 

 

2. LaTeX: \sqrt{150}-5\sqrt{96}+\sqrt{18}150596+18

LaTeX: =\sqrt{25}\sqrt{6}-5\sqrt{16}\sqrt{6}+\sqrt{9}\sqrt{2}=2565166+92                  simplify the radicals

LaTeX: =5\sqrt{6}-5\cdot4\sqrt{6}+3\sqrt{2}=56546+32                                

LaTeX: =5\sqrt{6}-20\sqrt{6}+3\sqrt{2}=56206+32                                  combine like terms (same radicands)

LaTeX: =-15\sqrt{6}+3\sqrt{2}=156+32 

Notice that in the second example, we could not add negative fifteen square root of six plus three square root of two because they are not like radicals.

 

3. LaTeX: 4\sqrt[3]{81}+2\sqrt[3]{72}-3\sqrt[3]{24}4381+23723324

LaTeX: =4\sqrt[3]{27}\sqrt[3]{3}+2\sqrt[3]{8}\sqrt[3]{9}-3\sqrt[3]{8}\sqrt[3]{3}=432733+2383933833                 simplify the radicals - remember these are CUBE roots

LaTeX: =4\cdot3\sqrt[3]{3}+2\cdot2\sqrt[3]{9}-3\cdot2\sqrt[3]{3}=4333+22393233

LaTeX: =12\sqrt[3]{3}+4\sqrt[3]{9}-6\sqrt[3]{3}=1233+439633                                   combine like terms (same radicands)

LaTeX: =6\sqrt[3]{3}+4\sqrt[3]{9}=633+439


Adding and Subtracting Radicals Practice

Try these problems!

  1. LaTeX: 5\sqrt[2]{28}+2\sqrt[2]{7}-\sqrt[2]{14}5228+227214

  2. LaTeX: 3\sqrt[2]{32}-4\sqrt[2]{2}3232422

  3. LaTeX: 5\sqrt[3]{80}-12\sqrt[3]{270}5380123270

  4. LaTeX: -3\sqrt[3]{40}+6\sqrt[3]{56}-7\sqrt[3]{135}3340+635673135

TO VIEW THE SOLUTIONS ONCE YOU HAVE PRACTICED, CLICK HERE. Links to an external site.

IMAGES CREATED BY GAVS