ISPA - Ratio Test

Ratio Test

Ratio Test

The Ratio Test measures the rate of growth or decrease of a series by examining the ratio LaTeX: \frac{a_{n+1}}{a_n}an+1an in order to determine whether LaTeX: \sum^{\infty}_{n=1}a_nn=1an converges or diverges. The Ratio Test states:

Let LaTeX: \sum a_nan be a series with nonzero terms.

i) If LaTeX: \lim_{n \to \infty }\left|\frac{a_{n+1}}{a_n}\right|<1limn|an+1an|<1, then LaTeX: \sum^{\infty}_{n=1}a_nn=1an converges absolutely.

ii) If LaTeX: \lim_{n \to \infty }\left|\frac{a_{n+1}}{a_n}\right|>1limn|an+1an|>1 or LaTeX: \lim_{n \to \infty }\left|\frac{a_{n+1}}{a_n}\right|=\infty limn|an+1an|=, then LaTeX: \sum^{\infty}_{n=1}a_nn=1an diverges.

iii) If LaTeX: \lim_{n \to \infty }\left|\frac{a_{n+1}}{a_n}\right|=1limn|an+1an|=1, then the Ratio test is inconclusive.

View the next presentation that provides examples of how the Ratio Test is used to determine convergence or divergence of an infinite series.

Another perspective on using the Ratio Test to determine convergence is presented below.

Use the interactive applet to explore the Ratio Test by CLICKING HERE. Links to an external site.

Ratio Test Practice

PROBLEM: What does the Ratio Test say about the convergence of the series LaTeX: \frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+...12+12+14+14+18+18+...

SOLUTION: LaTeX: \lim_{n \to \infty }|\frac{a_n+1}{a_n}|limn|an+1an| does not exist, so the Ratio Test does not apply,

Ratio Test: Even More Problems!

Please review all content and feedback and contact your instructor if additional clarification is needed. Once you feel confident with the material, go to the Quizzes widget and complete the Integral, Comparison, Alternating Series, and Ratio Tests Quiz.

IMAGES CREATED BY GAVS