ISPA - Sequences

Sequences

Sequence Terms and Notation

A sequence is a list of numbers written in a definite order. Sequences can be either finite or infinite. An infinite sequence is of the general form . For every positive integer n, there is a corresponding number an. This sequence is defined as a function whose domain is the set of positive integers. Each of the numbers a1, a2, a3, a4, ... , an, an+1 ... are the terms of the sequence. The notation {an} or LaTeX: \left\{a_n\right\}_{n=1}^{\infty}{an}n=1refers to a sequence whose nth term is an. The integer n is called the index of an. It is possible to define some sequences such as LaTeX: a_n=\left(\frac{\pi}{e}\right)^n=\left\{\frac{\pi}{e},\frac{\pi^2}{e^2},\frac{\pi^3}{e^3}...,\frac{\pi^n}{e^n},...\right\}an=(πe)n={πe,π2e2,π3e3...,πnen,...} by a formula for the nth term. Other sequences such as the Fibonacci sequence {fn} = {1, 1, 2, 3, 5, 8, 13, 21, ...}, the recursively defined sequence f1 = 1, f2 = 1, fn = fn-1 + fn-2, n > 3, and {an} where an is the digit in the nth decimal place of , {1, 4, 1, 5, 9, 2, 6, 5, 4, ...} are not definable by the nth term.

View the Introduction to Sequences presentation below.

Limit of a Sequence

The limit of a sequence {an} is defined as a real number L, written as LaTeX: \lim_{n \to \infty }a_n=L\:\:or\:\:a_n\rightarrow L \:as\:n\rightarrow \inftylimnan=LoranLasn, if the terms an can be made sufficiently close to L by taking n sufficiently large. If LaTeX: \lim_{n \to \infty }a_nlimnan exists, the sequence converges to the number L. If no such limit exists, then the sequence diverges. It is also true that if LaTeX: \lim_{n \to \infty }|a_n|=0limn|an|=0, then LaTeX: \lim_{n \to \infty }a_n=0limnan=0.

Since sequences are functions with domain restricted to the positive integers, the limit laws for functions discussed in the Limits and Continuity module also hold for sequences.

image of different limit laws for sequences

The next presentation focuses on determining whether or not a sequence converges to a unique limiting value and illustrates how graphing a sequence on the TI-83/84Plus family can be used to support the existence or nonexistence of a unique limiting value.

L'Hopital's Rule

Because L'Hopital's Rule applies to functions and not to sequences, it is necessary to formalize the connection between LaTeX: \lim_{a \to \infty }a_nlimaan and LaTeX: \lim_{n \to \infty }f(x)limnf(x). Suppose that f(x) is a function defined for all x > n0 ­­ and that {n} is a sequence of real numbers such that an = f(n) for n > n0. Then LaTeX: \lim_{n \to \infty }f(x)=L\Longrightarrow \lim_{a \to \infty }a_n=Llimnf(x)=Llimaan=L . Consider the following example:

calculating the limit and L'Hopital's Rule example

Squeeze Theorem

In the Limits and Continuity module, the Squeeze Theorem for functions stated that if f(x) < g(x) < h(x) when x is near a (except for possibly at a) and LaTeX: \lim_{x \to a}f(x)=\lim_{x \to a}h(x)=L\:then\:\lim_{x \to a}g(x)=Llimxaf(x)=limxah(x)=Lthenlimxag(x)=L. The Squeeze Theorem adapted for sequences states that if {an}, {bn}, and {cn} are sequences such that an < bn < cn for all n and LaTeX: \lim_{n \to \infty }a_n=\lim_{n \to \infty }c_n=L, \:then\:\lim_{n \to \infty }b_n=Llimnan=limncn=L,thenlimnbn=L.

View the next presentation on finding limits of a sequence using the Squeeze Theorem.

To explore the convergence and divergence of sequences using an interactive applet CLICK HERE. Links to an external site.

View the next presentation to learn how to graph sequences on a graphing calculator.

Monotonic and Bounded Sequences

A sequence {an} is increasing if an < an+1 for all n > 1 and it is decreasing if an > an+1 for all n > 1. A sequence that is either increasing or decreasing is a monotonic sequence. Consider examples of sequences that are either monotonic or not monotonic.

Example of monotonic versus not a monotonic sequence

A sequence {an} is bounded above if there is a number M such that an < M for all n > 1. The number M is called an upper bound of the sequence. If M is an upper bound for {an} but no number smaller than M is an upper bound for {an}, then M is a least upper bound for {an}.

A sequence {an} is bounded below if there is a number m such that m < an for all n > 1. The number m is called a lower bound of the sequence. If m is a lower bound for {an} but no number greater than m is a lower bound for {an}, then m is the greatest lower bound for {an}.

A sequence {an} that is bounded above and below is a bounded sequence. If {an} is not bounded, then {an} is an unbounded sequence. Combining the characteristics of monotonicity and boundedness, the Monotonic Sequence Theorem states that every bounded, monotonic sequence is convergent.

View the Monotonic and Bounded Sequences video and Slides 3 and 4 of the Sequences 2 video accessed from the More Resources sidebar section.

The next presentation shows how to prove a sequence is non-decreasing and bounded. Begin viewing at 4:10.

Sequences Practice

Sequences: Even More Problems!

Complete problems from your textbook and/or online resources as needed to ensure your complete understanding of sequences.

IMAGES CREATED BY GAVS