DITF - Natural Logarithmic Function and Integration Lesson

Natural Logarithmic Function and Integration

Log Rule for Integration

The general rule for differentiating a natural logarithmic function is LaTeX: \frac{d}{du}\left(\ln u\right)=\frac{1}{u}\frac{du}{dx}ddu(lnu)=1ududx. The final result in the following differentiation of a natural logarithmic function problem has important implications for determining a corresponding integration formula.

Find f'(x) if f(x) = ln |x|

LaTeX: f(x) =
    \begin{cases}
      \ln x & if\: x > 0\\
      \ln(-x) & if\: x<0\\
    \end{cases}      \\
f'(x) =
    \begin{cases}
      \frac{1}{x} & if\: x > 0\\
      \frac{1}{-x}(-1)=\frac{1}{x} & if\: x<0\\
    \end{cases}      
f(x)={lnxifx>0ln(x)ifx<0f(x)={1xifx>01x(1)=1xifx<0

Thus, LaTeX: f'\left(x\right)=\frac{1}{x}f(x)=1x for all LaTeX: x\ne0x0 AND LaTeX: \frac{d}{dx}\left(\ln\left|x\right|\right)=\frac{1}{x}ddx(ln|x|)=1x

The related integral formula (Log Rule for Integration) states that if u is a positive or negative differentiable function, then LaTeX: \int\frac{1}{u}du=\ln\left|u\right|+C1udu=ln|u|+C. Recall LaTeX: \int u^ndx=\frac{u^{n+1}}{n+1}+C,\:n\ne-1undx=un+1n+1+C,n1. The Log Rule for Integration provides the means for addressing the n ≠ -1 restriction.

Integration Involving Change of Variables

The integration technique using a change of variables followed by a substitution is valid for integrands involving natural logarithmic functions.

Recall that if u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then du = g'(x)dx, and LaTeX: \int f\left(g\left(x\right)\right)g'\left(x\right)dx=\int f\left(u\right)du=F\left(u\right)+Cf(g(x))g(x)dx=f(u)du=F(u)+C.

View the video below from 3:35 - 7:46.

The examples that follow illustrate a variety of function types that require the log rule for integration.

Example 1

Evaluate the integral: LaTeX: \int\frac{\cos\:x}{2+\sin x}dxcosx2+sinxdx 

Solution: Let LaTeX: u=2+\sin x,\:du=\cos xdxu=2+sinx,du=cosxdx

LaTeX: \int\frac{\cos x}{2+\sin x}dx=\int\frac{du}{u}=\ln\left|u\right|+C=\ln\left|2+\sin x\right|+Ccosx2+sinxdx=duu=ln|u|+C=ln|2+sinx|+C

Example 2

Evaluate the integral: LaTeX: \int \frac{2-x^2}{6x-x^3}dx2x26xx3dx 

Solution: Let LaTeX: u=6x-x^3;\:du=\left(6-3x^2\right)dx=3\left(2-x^2\right)dxu=6xx3;du=(63x2)dx=3(2x2)dx

LaTeX: \int\frac{2-x^2}{6x-x^3}dx=\frac{1}{3}\int\frac{du}{u}=\frac{1}{3}\ln\left|u\right|+C=\frac{1}{3}\ln\left|6x-x^3\right|+C2x26xx3dx=13duu=13ln|u|+C=13ln|6xx3|+C

Example 3

Evaluate the integral: LaTeX: \int\frac{e^x}{e^x+1}dxexex+1dx 

Solution: LaTeX: u=e^x+1,\:du=e^xdxu=ex+1,du=exdx

LaTeX: \int\frac{e^x}{e^x+1}dx=\int\frac{du}{u}=\ln\left|u\right|+C=\ln\left|e^x+1\right|+Cexex+1dx=duu=ln|u|+C=ln|ex+1|+C

Example 4

Evaluate the integral: LaTeX: \int_1^2\frac{4+u^2}{u^3}du214+u2u3du 

Solution: LaTeX: =\int_1^2\frac{4}{u^3}du+\int_1^2\frac{u^2}{u^3}du\\
=4\int_1^2u^{-3}du+\int_1^2\frac{1}{u}du\\
=4\left(\frac{1}{-2u^2}\right)\Bigg]_1^2+\ln\left|u\right|\Bigg]_1^2\\
=\left(\frac{-2}{u^2}\right)\Bigg]_1^2+\ln\left|u\right|\Bigg]_1^2\\
=\left(\frac{-1}{2}+2\right)+\ln2-\ln1=\frac{3}{2}+\ln2\\=214u3du+21u2u3du=421u3du+211udu=4(12u2)]21+ln|u|]21=(2u2)]21+ln|u|]21=(12+2)+ln2ln1=32+ln2

Integration Involving Long Division

Recall the technique for finding end behavior or slant asymptotes arising when graphing a rational function LaTeX: h\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}h(x)=f(x)g(x), where the degree of the numerator is greater than the degree of the denominator. q(x) and r(x) are the quotient and remainder when f(x) is divided by g(x), i.e., LaTeX: h\left(x\right)=q\left(x\right)+\frac{r\left(x\right)}{g\left(x\right)}h(x)=q(x)+r(x)g(x) with the degree of r less than the degree of g. The graph of q is the end behavior asymptote of h. Similarly, when integrals involve a rational function LaTeX: h\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}h(x)=f(x)g(x), where the degree of the numerator is greater than or equal to the degree of the denominator, performing long division and then rewriting the integrand as LaTeX: q\left(x\right)+\frac{r\left(x\right)}{g\left(x\right)}q(x)+r(x)g(x) with the degree of r less than the degree of g transforms the LaTeX: \frac{r\left(x\right)}{g\left(x\right)}r(x)g(x) portion of the integral into an integrable form LaTeX: \int\frac{1}{u}du=\ln\left|u\right|+C1udu=ln|u|+C.

Integrals of Trigonometric Functions

The Log Rule for Integration is used to develop formulas for integrating four trigonometric functions that were previously not possible. View the presentation on deriving the integrals of tan x, sec x, and csc x.

Integration rules for trigonometric functions are summarized below.

LaTeX: \int\sin udu=-\cos u+C\\
\int\cos udu=\sin u+C\\
\int\tan udu=\ln\left|\sec u\right|+C=-\ln\left|\cos u\right|+C\\
\int\cot udu=\ln\left|\sin u\right|+C=-\ln\left|\csc u\right|+C\\
\int\sec udu=\ln\left|\sec u+\tan u\right|+C\\
\int\csc udu=-\ln\left|\csc u+\cot u\right|+C\\sinudu=cosu+Ccosudu=sinu+Ctanudu=ln|secu|+C=ln|cosu|+Ccotudu=ln|sinu|+C=ln|cscu|+Csecudu=ln|secu+tanu|+Ccscudu=ln|cscu+cotu|+C

The fnInt calculator command is featured in the next presentation beginning at 7:30.

Natural Logarithmic Function and Integration Practice

Natural Logarithmic Function and Integration: Even More Problems!

Complete problems from your textbook and/or online resources as needed to ensure your complete understanding of the natural logarithmic function and integration.

IMAGES CREATED BY GAVS